
shroud Documentation
Release 0.13.0

llnl

Sep 22, 2023

Contents

1 Introduction 3

2 Installing 7

3 Tutorial 11

4 Input 23

5 Pointers and Arrays 37

6 Types 45

7 Namespaces 49

8 Structs and Classes 51

9 Default Arguments 63

10 Templates 65

11 Declarations 67

12 Output 73

13 C and C++ 81

14 Fortran 85

15 Python 91

16 Cookbook 99

17 Typemaps 101

18 Statements 107

19 C Statements 109

20 Fortran Statements 115

i

21 Reference 121

22 Releases 139

23 Fortran Previous Work 143

24 Python Previous Work 147

25 Future Work 149

26 Sample Fortran Wrappers 151

27 Numpy Struct Descriptor 203

28 Glossary 205

29 Indices and tables 207

Bibliography 209

ii

shroud Documentation, Release 0.13.0

Shroud is a tool for creating a Fortran or Python interface to a C or C++ library. It can also create a C API for a C++
library.

The user creates a YAML file with the C/C++ declarations to be wrapped along with some annotations to provide
semantic information and code generation options. Shroud produces a wrapper for the library. The generated code is
highly-readable and intended to be similar to code that would be hand-written to create the bindings.

verb

1. wrap or dress (a body) in a shroud for burial.

2. cover or envelop so as to conceal from view.

Contents

Contents 1

shroud Documentation, Release 0.13.0

2 Contents

CHAPTER 1

Introduction

Shroud is a tool for creating a Fortran or Python interface to a C or C++ library. It can also create a C API for a C++
library.

The user creates a YAML file with the C/C++ declarations to be wrapped along with some annotations to provide
semantic information and code generation options. Shroud produces a wrapper for the library. The generated code is
highly-readable and intended to be similar to code that would be hand-written to create the bindings.

Input is read from the YAML file which describes the types, variables, enumerations, functions, structures and classes
to wrap. This file must be created by the user. Shroud does not parse C++ code to extract the API. That was considered
a large task and not needed for the size of the API of the library that inspired Shroud’s development. In addition, there
is a lot of semantic information which must be provided by the user that may be difficult to infer from the source
alone. However, the task of creating the input file is simplified since the C++ declarations can be cut-and-pasted into
the YAML file.

In some sense, Shroud can be thought of as a fancy macro processor. It takes the function declarations from the YAML
file, breaks them down into a series of contexts (library, class, function, argument) and defines a dictionary of format
macros of the form key=value. There are then a series of macro templates which are expanded to create the wrapper
functions. The overall structure of the generated code is defined by the classes and functions in the YAML file as well
as the requirements of C++ and Fortran syntax.

Each declaration can have annotations which provide semantic information. This information is used to create more
idiomatic wrappers. Shroud started as a tool for creating a Fortran wrapper for a C++ library. The declarations and
annotations in the input file also provide enough information to create a Python wrapper.

1.1 Goals

• Simplify the creating of wrapper for a C++ library.

• Preserves the object-oriented style of C++ classes.

• Create an idiomatic wrapper API from the C++ API.

• Generate code which is easy to understand.

3

shroud Documentation, Release 0.13.0

• No dependent runtime library.

1.2 Fortran

The Fortran wrapper is created by using the interoperability with C features added in Fortran 2003. This includes the
iso_c_binding module and the bind and value keywords. Fortran cannot interoperate with C++ directly and
uses C as the lingua franca. C++ can communicate with C via a common heritage and the extern "C" keyword. A
C API for the C++ API is produced as a byproduct of the Fortran wrapping.

Using a C++ API to create an object and call a method:

Instance * inst = new Instance;
inst->method(1);

In Fortran this becomes:

type(instance) inst
inst = instance()
call inst%method(1)

Note: The ability to generate C++ wrappers for Fortran is not supported.

1.2.1 Issues

There is a long history of ad-hoc solutions to provide C and Fortran interoperability. Any solution must address several
problems:

• Name mangling of externals. This includes namespaces and operator overloading in C++.

• Call-by-reference vs call-by-value differences

• Length of string arguments.

• Blank filled vs null terminated strings.

The 2003 Fortran standard added several features for interoperability with C:

• iso_c_binding - intrinsic module which defines fortran kinds for matching with C’s types.

• BIND keyword to control name mangling of externals.

• VALUE attribute to allow pass-by-value.

In addition, Fortran 2003 provides object oriented programming facilities:

• Type extension

• Procedure Polymorphism with Type-Bound Procedures

• Enumerations compatible with C

Further Interoperability of Fortran with C, Technical Specification TS 29113, now part of Fortran 2018, introduced
additional features:

• assumed-type

• assumed-rank

4 Chapter 1. Introduction

shroud Documentation, Release 0.13.0

• ALLOCATABLE, OPTIONAL, and POINTER attributes may be specified for a dummy argument in a procedure
interface that has the BIND attribute.

• CONTIGUOUS attribute

Shroud uses the features of Fortran 2003 as well as additional generated code to solve the interoperability problem to
create an idiomatic interface.

1.2.2 Limitations

Not all features of C++ can be mapped to Fortran. Variadic function are not directly supported. Fortran supports
OPTIONAL arguments but that does not map to variadic functions. OPTIONAL has a known number of possible
argument while variadic does not.

Templates will be explicitly instantiated. The instances are listed in the YAML file and a wrapper will be created for
each one. However, Fortran can not initantiate templates at compile time.

Lambda functions are not supported.

Some other features are not currently supported but will be in the future: complex type, exceptions.

1.2.3 Requirements

Fortran wrappers are generated as free-form source and require a Fortran 2003 compiler. C code requires C99.

1.3 Python

The Python wrappers use the CPython API to create a wrapper for the library.

1.3.1 Requirements

The generated code will require

• Python 2.7 or Python 3.4+

• NumPy can be used when using pointers with rank, dimension or allocatable, attributes.

1.4 XKCD

XKCD

1.3. Python 5

https://docs.python.org/3/c-api/index.html
https://xkcd.com/1319

shroud Documentation, Release 0.13.0

6 Chapter 1. Introduction

CHAPTER 2

Installing

The easiest way to install Shroud is via pip which will fetch a file from pypi

pip install llnl-shroud

This will install Shroud into the same directory as pip. A virtual environment can be created if another destination
directory is desired. For details see the python docs

The source is available from github.com/LLNL/shroud A shiv packaged executable is also available at github releases.
This is an executable file which contains Shroud and PyYAML and uses the Python3 in the user’s path.

Shroud is written in Python and has been tested with version 2.7 and 3.4+. It requires the module:

• PyYAML https://github.com/yaml/pyyaml

After downloading the source:

python setup.py install

This will create the script shroud in the same directory as Python.

Since shroud installs into Python’s bin directory, it may be desirable to setup a virtual environment to try it out:

$ cd my_project_folder
$ virtualenv my_project
$ source my_project/bin/activate
$ cd path/to/shroud/source
$ python setup.py install

This will create an executable at my_project/bin/shroud. This version requires the virtual environment to run
and may be difficult to share with others.

It’s possible to create a standalone executable with shiv:

$ cd path/to/shroud/source
$shiv --python '/usr/bin/env python3' -c shroud -o dist/shroud.pyz .

7

https://pypi.org
https://packaging.python.org/tutorials/installing-packages/#creating-virtual-environments
https://github.com/LLNL/shroud
https://github.com/linkedin/shiv
https://github.com/LLNL/shroud/releases
https://github.com/yaml/pyyaml
https://github.com/linkedin/shiv

shroud Documentation, Release 0.13.0

A file shroud.pyz is created which bundles all of shroud and pyYAML into a single file. It uses the python on your
path to run.

2.1 Building wrappers with CMake

Shroud can produce a CMake macro file with the option -cmake. This option can be incorporated into a CMakefile
as:

if(EXISTS ${SHROUD_EXECUTABLE})
execute_process(COMMAND ${SHROUD_EXECUTABLE}

--cmake ${CMAKE_CURRENT_BINARY_DIR}/SetupShroud.cmake
ERROR_VARIABLE SHROUD_cmake_error
OUTPUT_STRIP_TRAILING_WHITESPACE)

if(${SHROUD_cmake_error})
message(FATAL_ERROR "Error from Shroud: ${SHROUD_cmake_error}")

endif()
include(${CMAKE_CURRENT_BINARY_DIR}/SetupShroud.cmake)

endif()

The path to Shroud must be defined to CMake. It can be defined on the command line as:

cmake -DSHROUD_EXECUTABLE=/full/path/bin/shroud

The add_shroud macro can then be used in other CMakeLists.txt files as:

add_shroud(
YAML_INPUT_FILE ${YAML_INPUT_FILE}
C_FORTRAN_OUTPUT_DIR c_fortran

)

CMake will treat all Fortran files as free format with the command:

set(CMAKE_Fortran_FORMAT FREE)

2.2 Building Python extensions

setup.py can be used to build the extension module from the files created by shroud. This example is drawn from
the run/tutorial example. You must provide the paths to the input YAML file and the C++ library source files:

import os
from distutils.core import setup, Extension
import shroud
import numpy

outdir = 'build/source'
if not os.path.exists(outdir):

os.makedirs(outdir)
config = shroud.create_wrapper('../../../tutorial.yaml',

path=['../../..'],
outdir=outdir)

tutorial = Extension(
'tutorial',

(continues on next page)

8 Chapter 2. Installing

shroud Documentation, Release 0.13.0

(continued from previous page)

sources = config.pyfiles + ['../tutorial.cpp'],
include_dirs=[numpy.get_include(), '..']

)

setup(
name='tutorial',
version="0.0",
description='shroud tutorial',
author='xxx',
author_email='yyy@zz',
ext_modules=[tutorial],

)

The directory structure is layed out as:

tutorial.yaml
run

tutorial
tutorial.cpp # C++ library to wrap
tutorial.hpp
python

setup.py # setup file shown above
build

source
create by shroud
pyClass1type.cpp
pySingletontype.cpp
pyTutorialmodule.cpp
pyTutorialmodule.hpp
pyTutorialhelper.cpp

lib
tutorial.so # generated module

2.2. Building Python extensions 9

shroud Documentation, Release 0.13.0

10 Chapter 2. Installing

CHAPTER 3

Tutorial

This tutorial will walk through the steps required to create a Fortran or Python wrapper for a simple C++ library.

3.1 Functions

The simplest item to wrap is a function in the file tutorial.hpp:

namespace tutorial {
void NoReturnNoArguments(void);

}

This is wrapped using a YAML input file tutorial.yaml:

library: Tutorial
cxx_header: tutorial.hpp

declarations:
- decl: namespace tutorial

declarations:
- decl: void NoReturnNoArguments()

library is used to name output files and name the Fortran module. cxx_header is the name of a C++ header file which
contains the declarations for functions to be wrapped. declarations is a sequence of mappings which describe the
functions to wrap.

Process the file with Shroud:

% shroud tutorial.yaml
Wrote wrapTutorial.h
Wrote wrapTutorial.cpp
Wrote wrapftutorial.f

Wrote pyClass1type.cpp

(continues on next page)

11

shroud Documentation, Release 0.13.0

(continued from previous page)

Wrote pyTutorialmodule.hpp
Wrote pyTutorialmodule.cpp
Wrote pyTutorialutil.cpp

The C++ code to call the function:

#include "tutorial.hpp"

using namespace tutorial;
NoReturnNoArguments();

And the Fortran version:

use tutorial_mod
call no_return_no_arguments

The generated code is listed at NoReturnNoArguments.

3.2 Arguments

3.2.1 Integer and Real

Integer and real types are handled using the iso_c_binding module which match them directly to the correspond-
ing types in C++. To wrap PassByValue:

double PassByValue(double arg1, int arg2)
{

return arg1 + arg2;
}

Add the declaration to the YAML file:

declarations:
- decl: double PassByValue(double arg1, int arg2)

Usage:

use tutorial_mod
real(C_DOUBLE) result
result = pass_by_value(1.d0, 4)

import tutorial
result = tutorial.PassByValue(1.0, 4)

3.3 Pointer Functions

Functions which return a pointer will create a Fortran wrapper with the POINTER attribute:

- decl: int * ReturnIntPtrDim(int *len+intent(out)+hidden) +dimension(len)

12 Chapter 3. Tutorial

shroud Documentation, Release 0.13.0

The C++ routine returns a pointer to an array and the length of the array in argument len. The Fortran API does not
need to pass the len argument since the returned pointer will know its length. The hidden attribute will cause len to
be omitted from the Fortran API, but still passed to the C wrapper.

It can be used as:

integer(C_INT), pointer :: intp(:)
integer len

intp => return_int_ptr_dim_pointer()
len = size(intp)

The generated code is listed at returnIntPtrDimPointer.

A numeric pointer may also be processed differently by setting the deref attribute. Possible values are pointer, the
default, for a Fortran pointer. allocatable to create a Fortran allocatable array and copy the data into it. raw returns a
type(C_PTR). In this case, the len argument should not be hidden so it can be used from Fortran. And scalar can
be used when returning a pointer to a scalar. In this case, the len argument would be ignored.

3.4 Pointer arguments

When a C++ routine accepts a pointer argument it may mean several things

• output a scalar

• input or output an array

• pass-by-reference for a struct or class.

In this example, len and values are an input array and result is an output scalar:

void Sum(size_t len, const int *values, int *result)
{

int sum = 0;
for (size_t i=0; i < len; i++) {
sum += values[i];

}

*result = sum;
return;

}

When this function is wrapped it is necessary to give some annotations in the YAML file to describe how the variables
should be mapped to Fortran:

- decl: void Sum(size_t len +implied(size(values)),
const int *values +rank(1),
int *result +intent(out))

In the BIND(C) interface only len uses the value attribute. Without the attribute Fortran defaults to pass-by-
reference i.e. passes a pointer. The rank attribute defines the variable as a one dimensional, assumed-shape array. In
the C interface this maps to an assumed-length array. C pointers, like assumed-length arrays, have no idea how many
values they point to. This information is passed by the len argument.

The len argument defines the implied attribute. This argument is not part of the Fortran API since its presence is
implied from the expression size(values). This uses the Fortran intrinsic size to compute the total number of
elements in the array. It then passes this value to the C wrapper:

Fortran usage:

3.4. Pointer arguments 13

shroud Documentation, Release 0.13.0

use tutorial_mod
integer(C_INT) result
call sum([1,2,3,4,5], result)

Python usage. Since result is intent(out) it will be returned by the function.

import tutorial
result = tutorial.Sum([1, 2, 3, 4, 5])

See example Sum for generated code.

3.4.1 String

Character variables have significant differences between C and Fortran. The Fortran interoperability with C feature
treats a character variable of default kind as an array of character(kind=C_CHAR,len=1). The wrapper
then deals with the C convention of NULL termination to Fortran’s blank filled.

C++ routine:

const std::string ConcatenateStrings(
const std::string& arg1,
const std::string& arg2)

{
return arg1 + arg2;

}

YAML input:

declarations:
- decl: const std::string ConcatenateStrings(

const std::string& arg1,
const std::string& arg2)

The function is called as:

character(len=:), allocatable :: rv4c

rv4c = concatenate_strings("one", "two")

Note: This function is just for demonstration purposes. Any reasonable person would just use the concatenation
operator in Fortran.

3.5 Default Arguments

Each function with default arguments will create a C and Fortran wrapper for each possible prototype. For Fortran,
these functions are then wrapped in a generic statement which allows them to be called by the original name. A header
files contains:

double UseDefaultArguments(double arg1 = 3.1415, bool arg2 = true)

and the function is defined as:

14 Chapter 3. Tutorial

shroud Documentation, Release 0.13.0

double UseDefaultArguments(double arg1, bool arg2)
{

if (arg2) {
return arg1 + 10.0;

} else {
return arg1;

}
}

Creating a wrapper for each possible way of calling the C++ function allows C++ to provide the default values:

declarations:
- decl: double UseDefaultArguments(double arg1 = 3.1415, bool arg2 = true)

default_arg_suffix:
-
- _arg1
- _arg1_arg2

The default_arg_suffix provides a list of values of function_suffix for each possible set of arguments for the function.
In this case 0, 1, or 2 arguments.

Fortran usage:

use tutorial_mod
print *, use_default_arguments()
print *, use_default_arguments(1.d0)
print *, use_default_arguments(1.d0, .false.)

Python usage:

>>> import tutorial
>>> tutorial.UseDefaultArguments()
13.1415
>>> tutorial.UseDefaultArguments(1.0)
11.0
>>> tutorial.UseDefaultArguments(1.0, False)
1.0

The generated code is listed at UseDefaultArguments.

There are additional options for dealing with default arguments described at Default Argumens.

3.6 Overloaded Functions

C++ allows function names to be overloaded. Fortran supports this by using a generic interface. The C and Fortran
wrappers will generated a wrapper for each C++ function but must explicitly mangle the name to distinguish the
functions. The C++ compiler will mangle the names for you.

C++:

void OverloadedFunction(const std::string &name);
void OverloadedFunction(int indx);

By default the names are mangled by adding an index to the end. This can be controlled by setting function_suffix in
the YAML file:

3.6. Overloaded Functions 15

shroud Documentation, Release 0.13.0

declarations:
- decl: void OverloadedFunction(const std::string& name)

function_suffix: _from_name
- decl: void OverloadedFunction(int indx)

function_suffix: _from_index

call overloaded_function_from_name("name")
call overloaded_function_from_index(1)
call overloaded_function("name")
call overloaded_function(1)

tutorial.OverloadedFunction("name")
tutorial.OverloadedFunction(1)

3.7 Optional arguments and overloaded functions

Overloaded function that have optional arguments can also be wrapped:

- decl: int UseDefaultOverload(int num,
int offset = 0, int stride = 1)

- decl: int UseDefaultOverload(double type, int num,
int offset = 0, int stride = 1)

These routines can then be called as:

rv = use_default_overload(10)
rv = use_default_overload(1d0, 10)

rv = use_default_overload(10, 11, 12)
rv = use_default_overload(1d0, 10, 11, 12)

3.8 Templates

C++ template are handled by creating a wrapper for each instantiation of the function defined by the cxx_template
field. The C and Fortran names are mangled by adding a type suffix to the function name.

C++:

template<typename ArgType>
void TemplateArgument(ArgType arg)
{

return;
}

YAML:

- decl: |
template<typename ArgType>
void TemplateArgument(ArgType arg)

cxx_template:
- instantiation: <int>
- instantiation: <double>

16 Chapter 3. Tutorial

shroud Documentation, Release 0.13.0

Fortran usage:

call template_argument(1)
call template_argument(10.d0)

Python usage:

tutorial.TemplateArgument(1)
tutorial.TemplateArgument(10.0)

Likewise, the return type can be templated but in this case no interface block will be generated since generic function
cannot vary only by return type.

C++:

template<typename RetType>
RetType TemplateReturn()
{

return 0;
}

YAML:

- decl: template<typename RetType> RetType TemplateReturn()
cxx_template:
- instantiation: <int>
- instantiation: <double>

Fortran usage:

integer(C_INT) rv_integer
real(C_DOUBLE) rv_double
rv_integer = template_return_int()
rv_double = template_return_double()

Python usage:

rv_integer = TemplateReturn_int()
rv_double = TemplateReturn_double()

3.9 Generic Functions

C and C++ provide a type promotion feature when calling functions which Fortran does not support:

void FortranGeneric(double arg);

FortranGeneric(1.0f);
FortranGeneric(2.0);

When FortranGeneric is wrapped in Fortran it may only be used with the correct arguments:

call fortran_generic(1.)
1

Error: Type mismatch in argument 'arg' at (1); passed REAL(4) to REAL(8)

3.9. Generic Functions 17

shroud Documentation, Release 0.13.0

It would be possible to create a version of the routine in C++ which accepts floats, but that would require changes to
the library being wrapped. Instead it is possible to create a generic interface to the routine by defining which variables
need their types changed. This is similar to templates in C++ but will only impact the Fortran wrapper. Instead of
specify the Type which changes, you specify the argument which changes:

- decl: void FortranGeneric(double arg)
fortran_generic:
- decl: (float arg)
function_suffix: float

- decl: (double arg)
function_suffix: double

It may now be used with single or double precision arguments:

call fortran_generic(1.0)
call fortran_generic(1.0d0)

A full example is at GenericReal.

3.10 Types

3.10.1 Typedef

Sometimes a library will use a typedef to identify a specific use of a type:

typedef int TypeID;

int typefunc(TypeID arg);

Shroud must be told about user defined types in the YAML file:

declarations:
- decl: typedef int TypeID;

This will map the C++ type TypeID to the predefined type int. The C wrapper will use int:

int TUT_typefunc(int arg)
{

tutorial::TypeID SHC_rv = tutorial::typefunc(arg);
return SHC_rv;

}

3.10.2 Enumerations

Enumeration types can also be supported by describing the type to shroud. For example:

namespace tutorial
{

enum EnumTypeID {
ENUM0,
ENUM1,
ENUM2

(continues on next page)

18 Chapter 3. Tutorial

shroud Documentation, Release 0.13.0

(continued from previous page)

};

EnumTypeID enumfunc(EnumTypeID arg);

} /* end namespace tutorial */

This enumeration is within a namespace so it is not available to C. For C and Fortran the type can be describe as an
int similar to how the typedef is defined. But in addition we describe how to convert between C and C++:

declarations:
- decl: typedef int EnumTypeID

fields:
c_to_cxx : static_cast<tutorial::EnumTypeID>({c_var})
cxx_to_c : static_cast<int>({cxx_var})

The typename must be fully qualified (use tutorial::EnumTypeId instead of EnumTypeId). The C argument
is explicitly converted to a C++ type, then the return type is explicitly converted to a C type in the generated wrapper:

int TUT_enumfunc(int arg)
{

tutorial::EnumTypeID SHCXX_arg = static_cast<tutorial::EnumTypeID>(arg);
tutorial::EnumTypeID SHCXX_rv = tutorial::enumfunc(SHCXX_arg);
int SHC_rv = static_cast<int>(SHCXX_rv);
return SHC_rv;

}

Without the explicit conversion you’re likely to get an error such as:

error: invalid conversion from ‘int’ to ‘tutorial::EnumTypeID’

A enum can also be fully defined to Fortran:

declarations:
- decl: |

enum Color {
RED,
BLUE,
WHITE

};

In this case the type is implicitly defined so there is no need to add it to the types list. The C header duplicates the
enumeration, but within an extern "C" block:

// tutorial::Color
enum TUT_Color {

TUT_tutorial_Color_RED,
TUT_tutorial_Color_BLUE,
TUT_tutorial_Color_WHITE

};

Fortran creates integer parameters for each value:

! enum tutorial::Color
integer(C_INT), parameter :: tutorial_color_red = 0
integer(C_INT), parameter :: tutorial_color_blue = 1
integer(C_INT), parameter :: tutorial_color_white = 2

3.10. Types 19

shroud Documentation, Release 0.13.0

Note: Fortran’s ENUM, BIND(C) provides a way of matching the size and values of enumerations. However, it
doesn’t seem to buy you too much in this case. Defining enumeration values as INTEGER, PARAMETER seems
more straightforward.

3.10.3 Structure

A structure in C++ can be mapped directly to a Fortran derived type using the bind(C) attribute provided by Fortran
2003. For example, the C++ code:

struct struct1 {
int ifield;
double dfield;

};

can be defined to Shroud with the YAML input:

- decl: |
struct struct1 {

int ifield;
double dfield;

};

This will generate a C struct which is compatible with C++:

struct s_TUT_struct1 {
int ifield;
double dfield;

};
typedef struct s_TUT_struct1 TUT_struct1;

A C++ struct is compatible with C; however, its name may not be accessible to C since it may be defined within a
namespace. By creating an identical struct in the C wrapper, we’re guaranteed visibility for the C API.

Note: All fields must be defined in the YAML file in order to ensure that sizeof operator will return the same value
for the C and C++ structs.

This will generate a Fortran derived type which is compatible with C++:

type, bind(C) :: struct1
integer(C_INT) :: ifield
real(C_DOUBLE) :: dfield

end type struct1

A function which returns a struct value can have its value copied into a Fortran variable where the fields can be
accessed directly by Fortran. A C++ function which initialized a struct can be written as:

- decl: struct1 returnStructByValue(int i, double d);

The C wrapper casts the C++ struct to the C struct by using pointers to the struct then returns the value by dereferencing
the C struct pointer.

20 Chapter 3. Tutorial

shroud Documentation, Release 0.13.0

TUT_struct1 TUT_return_struct_by_value(int i, double d)
{

Cstruct1 SHCXX_rv = returnStructByValue(i, d);
TUT_cstruct1 * SHC_rv = static_cast<TUT_cstruct1 *>(

static_cast<void *>(&SHCXX_rv));
return *SHC_rv;

}

This function can be called directly by Fortran using the generated interface:

function return_struct_by_value(i, d) &
result(SHT_rv) &
bind(C, name="TUT_return_struct_by_value")

use iso_c_binding, only : C_DOUBLE, C_INT
import :: struct1
implicit none
integer(C_INT), value, intent(IN) :: i
real(C_DOUBLE), value, intent(IN) :: d
type(struct1) :: SHT_rv

end function return_struct

To use the function:

type(struct1) var

var = return_struct(1, 2.5)
print *, var%ifield, var%dfield

3.11 Classes

Each class is wrapped in a Fortran derived type which shadows the C++ class by holding a type(C_PTR) pointer to
an C++ instance. Class methods are wrapped using Fortran’s type-bound procedures. This makes Fortran usage very
similar to C++.

Now we’ll add a simple class to the library:

class Class1
{
public:

void Method1() {};
};

To wrap the class add the lines to the YAML file:

declarations:
- decl: class Class1

declarations:
- decl: Class1() +name(new)
format:

function_suffix: _default
- decl: ~Class1() +name(delete)
- decl: int Method1()

The constructor and destructor have no method name associated with them. They default to ctor and dtor. The names
can be overridden by supplying the +name annotation. These declarations will create wrappers over the new and
delete C++ keywords.

3.11. Classes 21

shroud Documentation, Release 0.13.0

The C++ code to call the function:

#include <tutorial.hpp>
tutorial::Class1 *cptr = new tutorial::Class1();

cptr->Method1();

And the Fortran version:

use tutorial_mod
type(class1) cptr

cptr = class1_new()
call cptr%method1

Python usage:

import tutorial
obj = tutorial.Class1()
obj.method1()

For more details see Structs and Classes.

22 Chapter 3. Tutorial

CHAPTER 4

Input

The input to Shroud is a YAML formatted file. YAML is a human friendly data serialization standard. [yaml] Structure
is shown through indentation (one or more spaces). Sequence items are denoted by a dash, and key value pairs within
a map are separated by a colon:

library: Tutorial

declarations:
- decl: typedef int TypeID

- decl: void Function1()

- decl: class Class1
declarations:
- decl: void Method1()

Each decl entry corresponds to a line of C or C++ code. The top level declarations field represents the source
file while nested declarations fields corresponds to curly brace blocks. The above YAML file represent the source
file:

typedef int TypeID;

void Function1();

class Class1
{

void Method1();
}

A block can be used to group a collection of decl entires. Any option or format fields will apply to all
declarations in the group:

declarations:
- block: True

options:
(continues on next page)

23

shroud Documentation, Release 0.13.0

(continued from previous page)

F_name_impl_template: {library}_{undescore_name}
format:
F_impl_filename: localfile.f

declarations:
- decl: void func1()
- decl: void func2()

Shroud use curly braces for format strings. If a string starts with a curly brace YAML will interpret it as a
map/dictionary instead of as part of the string. To avoid this behavior, strings which start with a curly brace should be
quoted:

name : "{fmt}"

Strings may be split across several lines by indenting the continued line:

- decl: void Sum(int len, const int *values+rank(1),
int *result+intent(out))

Some values consist of blocks of code. The pipe, |, is used to indicate that the string will span several lines and that
newlines should be preserved:

C_invalid_name: |
if (! isNameValid({cxx_var})) {{

return NULL;
}}

Note that to insert a literal {, a double brace, {{, is required since single braces are used for variable expansion.
{cxx_var} in this example. However, using the pipe, it is not necessary to quote lines that contain other YAML
meta characters such as colon and curly braces.

For example, YAML will get confused by the :: characters and try to create a dictionary with the key integer,
parameter :.

splicer_code:
f:
module_top:
- integer, parameter :: INDEXTYPE = 5

Literal newlines, /n, are respected. Line lengths are controlled by the options C_line_length and F_line_length and
default to 72.:

C_invalid_name: |
if (! isNameValid({cxx_var})) {{+
return NULL;
-}}

The only formatting option is to control output line lengths. This is required for Fortran which has a maximum line
length of 132 in free form which is generated by shroud. If you care where curly braces go in the C source then it is
best to set C_line_length to a large number then use an external formatting tool such as indent or uncrustify.

24 Chapter 4. Input

shroud Documentation, Release 0.13.0

4.1 Customizing Behavior in the YAML file

4.1.1 Fields

A field only applies to the type, enumeration, function, structure or class to which it belongs. It is not inherited. For
example, cxx_header is a field which is used to define the header file for class Names. Likewise, setting library within
a class does not change the library name.

library: testnames

declarations:
- decl: class Names
cxx_header: names.hpp
declarations:
- decl: void method1

4.1.2 Options

Options are used to customize the behavior of Shroud. They are defined in the YAML file as a dictionary. Options
can be defined at the global, class, or function level. Each level creates a new scope which can access all upper level
options. This allows the user to modify behavior for all functions or just a single one:

options:
option_a = false
option_b = false
option_c = false

declarations:
- class: class1

options:
option_a = false # inherited

option_b = true
option_c = false # inherited

declarations:
- decl: void function1
options:

option_a = false # inherited
option_b = true # inherited

option_c = true

4.2 Format

A format dictionary contains strings which can be inserted into generated code. Generated filenames are also entries
in the format dictionary. Format dictionaries are also scoped like options. For example, setting a format in a class also
effects all of the functions within the class.

4.2.1 How code is formatted

Format strings contain “replacement fields” surrounded by curly braces {}. Anything that is not contained in braces is
considered literal text, which is copied unchanged to the output. If you need to include a brace character in the literal
text, it can be escaped by doubling: {{ and }}. [Python_Format]

4.1. Customizing Behavior in the YAML file 25

shroud Documentation, Release 0.13.0

There are some metacharacters that are used for formatting the line:

\f

Add an explicit formfeed

\t

A tab is used to suggest a place to break the line for a continuation before it exceeds option C_line_length
or F_line_length. Any whitespace after a tab will be trimmed if the line is actually split at the tab. If a
continuation was not needed (there was enough space on the current line) then the tab has no effect:

arg1,\t arg2

+ -

Increase or decrease indention indention level. Used at the beginning or end of a line:

if (condition) {{+
do_one();
-}} else {{+
do_two();
-}}

The double curly braces are replace by a single curly. This will be indented as:

if (condition) {
do_one();

} else {
do_two();

}

#

If the first character is a #, ignore indention and write in column 0. Useful for preprocessing directives.

^

If the first character is ^, ignore indention and write in column 0. Useful for comments or labels.

@

If the first character is @, treat the following character literally. Used to ignore a metacharacter:

struct aa = {{++
0// set field to 0
@0,
-}};

Formatted as:

struct aa = {
// set field to 0

0,
};

4.3 Attributes

Annotations or attributes apply to specific arguments or results. They describe semantic behavior for an argument. An
attribute may be set to true by listing its name or it may have a value in parens:

26 Chapter 4. Input

shroud Documentation, Release 0.13.0

- decl: Class1() +name(new)
- decl: void Sum(int len, const int *values+rank(1)+intent(in))
- decl: const std::string getName() +len(30)

Attributes may also be added external to decl:

- decl: void Sum(int len, const int *values)
attrs:

values:
intent: in
rank: 1

- decl: const std::string getName()
fattrs:

len: 30

Attributes must be added before default arguments since a default argument may include a plus symbol:

- decl: void Sum(int len, const int *values+rank(1)+intent(in) =nullptr)

4.3.1 api

Controls the API used by the C wrapper. The values are capi, buf, capsule, capptr, cdesc and cfi. Normally, this
attribute is determined by Shroud internally. Scalar native types such as int and double will use capi since the
argument can be passed directly to C using the interoperability with C feature of Fortran.

Otherwise a ‘bufferify’ wrapper will also be created. Pointers to native and char use additional metadata extracted
by the Fortran wrapper via intrinsics LEN and SIZE. In addition, intent(in) strings will be copied and null-terminated.
This uses api(buf).

cdesc will pass down a pointer to a struct which contains metadata for the argument instead of passing additional
fields. The advantage is the struct can also be used to return metadata from the C wrapper to the Fortran wrapper. The
struct is named by the format fields C_array_type and F_array_type.

The option F_CFI, will use the Further interoperability with C features and pass CFI_cdesc_t arguments to the C
where where the metadata is extracted. This uses api(cfi).

The capsule and capptr APIs are used by the capsule created by shadow types created for C++ classes. In both cases
the result is passed from Fortran to C as an extra argument for function which return a class. With capptr, the C
wrapper will return a pointer to the capsule argument while capsule will not return a value for the function. This is
controlled by the C_shadow_result option.

There is currently one useful case where the user would want to set this attribute. To avoid creating a wrapper which
copies and null terminates a char * argument the user can set api(capi). The address of the formal parameter will
be passed to the user’s library. This is useful when null termination does not make sense. For example, when the
argument is a large buffer to be written to a file. The C library must have some other way of determining the length of
the argument such as another argument with the explicit length.

4.3.2 assumedtype

When this attribute is applied to a void * argument, the Fortran assumed-type declaration, type(*), will be used.
Since Fortran defaults to pass-by-reference, the argument will be passed to C as a void * argument. The C function
will need some other mechanism to determine the type of the argument before dereferencing the pointer. Note that
assumed-type is part of Fortran 2018.

4.3. Attributes 27

shroud Documentation, Release 0.13.0

4.3.3 blanknull

Used with const char * arguments to convert a blank string to a NULL pointer instead of an empty C string
('\0'). Can be applied to all arguments with the option F_blanknull.

4.3.4 capsule

Name of capsule argument. Defaults to C_var_capsule_template.

4.3.5 cdesc

Pass argument from Fortran to C wrapper as a pointer to a context type. This struct contains the address, type, rank
and size of the argument. A ‘bufferify’ function will be created for the context type.

4.3.6 charlen

charlen is used to define the size of a char *arg+intent(out) argument in the Python wrapper. This deals with
the case where arg is provided by the user and the function writes into the provided space. This technique has the
inherent risk of overwritting memory if the supplied buffer is not long enough. For example, when used in C the user
would write:

#define API_CHARLEN
char buffer[API_CHARLEN];
fill_buffer(buffer);

The Python wrapper must know the assumed length before calling the function. It will then be converted into a str
object by PyString_FromString.

Fortran does not use this attribute since the buffer argument is supplied by the user. However, it is useful to provide
the parameter by adding a splicer block in the YAML file:

splicer_code:
f:
module_top:
- "integer, parameter :: MAXNAME = 20"

Warning: Using charlen and dimension together is not currently supported.

4.3.7 default

Default value for C++ function argument. This value is implied by C++ default argument syntax.

4.3.8 deref

Define how to dereference function results and pointers which are returned via an argument. It’s also used with objects
which represent an array such as std::string or std::vector. This may be used in conjunction with dimension to create
arrays. For example, int **out +intent(out)+deref(pointer)+dimension(10).

allocatable

28 Chapter 4. Input

shroud Documentation, Release 0.13.0

For Fortran, add ALLOCATABLE attribute to argument. An ALLOCATE statement is added and the con-
tents of the C++ argument is copied. If owner(caller) is also defined, the C++ argument is released. The
caller is responsible to DEALLOCATE the array.

For Python, create a NumPy array (same as pointer attribute)

arg

Added by Shroud when a function result needs to be passed as an additional argument from the Fortran
wrapper to the C wrapper.

copy

Copy results into the Fortran argument. This helps reduce memory management problems since there is
no dynamic memory. In addition, this helps with non-contiguous C++ memory such as arrays or vectors
of char * or std::string. Fortran can not deal with ragged arrays directly and will copy into the
contiguous argument.

pointer

For intent(in) arguments, a POINTER Fortran attribute will be added. This allows a dynamic memory
address to be passs to the library.

void giveMemory(arg *data +intent(in)+deref(pointer))

For intent(out) arguments this indicates that memory from the library is being passed back to the user and
will be assigned using c_f_pointer.

If owner(caller) is also defined, an additional argument is added which is used to release the memory.

For Python, create a list or NumPy array.

- decl: double *ReturnPtrFun() +dimension(10)
- decl: void ReturnPtrArg(double **arg +intent(out)+dimension(10))

- decl: double *ReturnScalar() +deref(pointer)

A pointer to scalar will also return a NumPy array in Python. Use +deref(scalar) to get a scalar.

raw

For Fortran, return a type(C_PTR).

For Python, return a PyCapsule.

scalar

Treat the pointee as a scalar. For Fortran, return a scalar and not a pointer to the scalar. For Python, this
will not create a NumPy object.

4.3.9 dimension

A list of array extents for pointer or reference variables. All arrays use the language’s default lower-bound (1 for
Fortran and 0 for Python). Used to define the dimension of pointer arguments with intent(out) and function results. It
can also be used with class member variables to create a getter which returns a Fortran pointer. A dimension without
any value is an error – +dimension.

The expression is evaluated in the C wrapper. It can be passed back to the Fortran wrapper via a cdesc argument of
type F_array_type when the attribute deref is set to allocatable or pointer. This allows the shape to be used in an
ALLOCATE statement or a call to C_F_POINTER.

4.3. Attributes 29

shroud Documentation, Release 0.13.0

For Futher interoperability with C, set with option F_CFI, the shape is used directly in the C wrapper in a call to
CFI_allocate or CFI_establish.

struct {
int len;
double *array +dimension(len);

};

An expression can also contain a intent(out) argument of the function being wrapped.

int * get_array(int **count +intent(out)+hidden) +dimension(count)

Argument count will be used to define the shape of the function result but will not be part of the wrapped API since
it is hidden.

rank and dimension can not be specified together.

The dimension may also be assumed-rank, dimension(..), to allow scalar or any rank. If option F_CFI is true, then
assumed-rank will be added to the function interface and the C wrapper will extract the rank from the CFI_cdesc_t
argument. Otherwise, a generic function will be created for each rank requested by options F_assumed_rank_min and
“F_assumed_rank_max.

4.3.10 external

This attribute is only valid with function pointers. It will ensure that a Fortran wrapper is created which uses the
external statement for the argument. This will allow any function to be used as the dummy argument for the
function pointer.

4.3.11 free_pattern

A name in the patterns section which lists code to be used to release memory. Used with function results. It is used
in the C_memory_dtor_function and will have the variable void *ptr available as the pointer to the memory to be
released. See Memory Management for details.

4.3.12 hidden

The argument will not appear in the Fortran API.

For the native C API it will appear as a regular argument. For the bufferify C API, it will be a local variable which is
passed to the C++ function.

It is useful for a function which returns the length of another pointer arguments. This value is save in the F_array_type
argument or the CFI_cdesc_t struct.

For example, setting the shape of a pointer function:

int * ReturnIntPtr(int *len+intent(out)+hidden) +dimension(len)+deref(pointer)

Will create a Fortran wrapper which returns a ``POINTER`` which
is ``len`` long but does not have an argument for the length.

integer(C_INT), pointer :: rv(:)
rv = return_int_ptr()
! size(rv) is argument len

30 Chapter 4. Input

shroud Documentation, Release 0.13.0

4.3.13 implied

The value of an arguments to the C++ function may be implied by other arguments. If so the implied attribute can be
used to assign the value to the argument and it will not be included in the wrapped API.

Used to compute value of argument to C++ based on argument to Fortran or Python wrapper. Useful with array sizes:

int Sum(const int * array, int len +implied(size(array))

Several functions will be converted to the corresponding code for Python wrappers: size, len and len_trim.

• size(array[,dim]) Determine the extent of array along a specified dimension dim, or the total number of elements
in array if dim is absent.

– array name of argument

– dim rank of array to check. If none, entire array.

• len(string) Returns the length of a character string.

• len_trim(string) Returns the length of a character string, ignoring any trailing blanks.

4.3.14 intent

The Fortran intent of the argument. Valid values are in, out, inout.

in The argument will only be read from.

inout The argument will be read from and written to.

out The argument will be written to.

Nonpointer arguments can only be intent(in). If the argument is const, the default is in.

In Python, intent(out) arguments are not used as input arguments to the function but are returned as values.

Internally, Shroud also assigns the values of function, ctor and dtor.

4.3.15 len

When used with a function, it will be the length of the return value of the function using the declaration:

character(kind=C_CHAR, len={c_var_len}) :: {F_result}

4.3.16 name

Name of the method. Useful for constructor and destructor methods which have default names ctor and dtor.
Also useful when class member variables use a convention such as m_variable. The name can be set to vari-
able to avoid polluting the Fortran interface with the m_ prefix. Fortran and Python both have an explicit scope of
self%variable and self.variable instead of an implied this.

4.3.17 owner

Specifies who is responsible to release the memory associated with the argument/result.

The terms follow Python’s reference counting . [Python_Refcount] The default is set by option default_owner which
is initialized to borrow.

4.3. Attributes 31

shroud Documentation, Release 0.13.0

caller

The memory belongs to the user who is responsible to delete it. A shadow class must have a destructor
wrapped in order to delete the memory.

library

The memory belongs to the library and should not be deleted by the user. This is the default value.

4.3.18 pass

Used to define the argument which is the passed-object dummy argument for type-bound procedures when treating a
struct as a class. In C, which does not support the class keyword, a struct can be used as a class by defining option
wrap_struct_as=class. Other functions can be associated with the class by setting option class_method to
the name of the struct.

See detail at Object-oriented C

4.3.19 rank

Add an assumed-shape dimension with the given rank. rank must be 0-7. A rank of 0 implies a scalar argument.

double *array +rank(2)

Creates the declaration:

real(C_DOUBLE) :: array(:,:)

Use with +intent(in) arguments when the wrapper should accept any extent instead of using Fortran’s assumed-
shape with dimension(:).

This can be simpler than the dimension attribute for multidimension arrays. rank and dimension can not be specified
together.

For the bind(C) interface, an assumed-size array will be created for any array with rank > 0.

real(C_DOUBLE) :: array(*)

4.3.20 readonly

May be added to struct or class member to avoid creating a setter function. If the member is const, this attribute is
added by Shroud.

4.3.21 value

If true, pass-by-value; else, pass-by-reference. This attribute is implied when the argument is not a pointer or reference.
This will also default to intent(IN) since there is no way to return a value.

Note: The Fortran wrapper may use an intrinsic function for some attributes. For example, len, len_trim, and size. If
there is an argument with the same name, the generated code may not compile.

Shroud preserves the names of the arguments since Fortran allows them to be used in function calls - call
worker(len=10)

32 Chapter 4. Input

shroud Documentation, Release 0.13.0

4.4 Statements

The code generated for each argument and return value can be controlled by statement dictionaries. Shroud has many
entries built in which are used for most arguments. But it is possible to add custom code to the wrapper by providing
additional fields. Most wrappers will not need to provide this information.

An example from strings.yaml:

- decl: const string * getConstStringPtrLen() +len=30
doxygen:
brief: return a 'const string *' as character(30)
description: |

It is the caller's responsibility to release the string
created by the C++ library.
This is accomplished with C_finalize_buf which is possible
because +len(30) so the contents are copied before returning.

fstatements:
c_buf:

final:
- delete {cxx_var};

An example from vectors.yaml:

- decl: void vector_iota_out_with_num(std::vector<int> &arg+intent(out))
fstatements:
c_buf:

return_type: long
ret:
- return Darg->size;

f:
result: num
f_module:

iso_c_binding: ["C_LONG"]
declare:
- "integer(C_LONG) :: {F_result}"
call:
- "{F_result} = {F_C_call}({F_arg_c_call})"

4.5 Patterns

To address the issue of semantic differences between Fortran and C++, patterns may be used to insert additional code.
A pattern is a code template which is inserted at a specific point in the wrapper. They are defined in the input YAML
file:

declarations:
- decl: const string& getString2+len=30()

C_error_pattern: C_invalid_name

patterns:
C_invalid_name: |

if ({cxx_var}.empty()) {{
return NULL;

}}

The C_error_pattern will insert code after the call to the C++ function in the C wrapper and before any post_call

4.4. Statements 33

shroud Documentation, Release 0.13.0

sections from the types. The bufferified version of a function will append _buf to the C_error_pattern value. The
pattern is formatted using the context of the return argument if present, otherwise the context of the function is used.
This means that c_var and c_var_len refer to the argument which is added to contain the function result for the _buf
pattern.

The function getString2 is returning a std::string reference. Since C and Fortran cannot deal with this
directly, the empty string is converted into a NULL pointer:: will blank fill the result:

const char * STR_get_string2()
{

const std::string & SHCXX_rv = getString2();
// C_error_pattern
if (SHCXX_rv.empty()) {

return NULL;
}
const char * SHC_rv = SHCXX_rv.c_str();
return SHC_rv;

}

4.6 Splicers

No matter how many features are added to Shroud there will always exist cases that it does not handle. One of the
weaknesses of generated code is that if the generated code is edited it becomes difficult to regenerate the code and
preserve the edits. To deal with this situation each block of generated code is surrounded by ‘splicer’ comments:

const char * STR_get_char3()
{

// splicer begin function.get_char3
const char * SH_rv = getChar3();
return SH_rv;
// splicer end function.get_char3

}

These comments delineate a section of code which can be replaced by the user. The splicer’s name, function.
get_char3 in the example, is used to determine where to insert the code.

There are two ways to define splicers in the YAML file. First add a list of files which contain the splicer text:

splicer:
f:
- fsplicer.f
c:
- csplicer.c

In the listed file, add the begin and end splicer comments, then add the code which should be inserted into the wrapper
inbetween the comments. Multiple splicer can be added to an input file. Any text that is not within a splicer block is
ignored. Splicers must be sorted by language. If the input file ends with .f or .f90 it is processed as splicers for the
generated Fortran code. Code for the C wrappers must end with any of .c, .h, .cpp, .hpp, .cxx, .hxx, .cc, .C:

-- Lines outside blocks are ignore
// splicer begin function.get_char3
const char * SH_rv = getChar3();
SH_rv[0] = 'F'; // replace first character for Fortran
return SH_rv + 1;
// splicer end function.get_char3

34 Chapter 4. Input

shroud Documentation, Release 0.13.0

This technique is useful when the splicers are very large or are generated by some other process.

The second method is to add the splicer code directly into the YAML file. A splicer can be added after the decl line.
This splicer takes priority over other ways of defining splicers.

- decl: bool isNameValid(const std::string& name)
splicer:

c:
- "return name != NULL;"
f:
- 'rv = name .ne. " "'

A splicer can be added in the splicer_code section. This can be used to add code to spliers which do not corre-
spond directly to a declaration. Each level of splicer is a mapping and each line of text is an array entry:

splicer_code:
c:
function:
get_char3:
- const char * SH_rv = getChar3();
- SH_rv[0] = 'F'; // replace first character for Fortran
- return SH_rv + 1;

In addition to replacing code for a function wrapper, there are splicers that are generated which allow a user to insert
additional code for helper functions or declarations:

! file_top
module {F_module_name}

! module_use
implicit none
! module_top

type class1
! class.{cxx_class}.component_part

contains
! class.{cxx_class}.generic.{F_name_generic}
! class.{cxx_class}.type_bound_procedure_part

end type class1

! additional_declarations

contains

! function.{F_name_function}

! {cxx_class}.method.{F_name_function}

! additional_functions

end module {F_module_name}

C header:

// class.{class_name}.CXX_declarations

extern "C" {
// class.{class_name}.C_declarations
}

4.6. Splicers 35

shroud Documentation, Release 0.13.0

C implementation:

// class.{class_name}.CXX_definitions

extern "C" {
// class.{class_name}.C_definitions

// function.{underscore_name}{function_suffix}

// class.{cxx_class}.method.{underscore_name}{function_suffix}

}

The splicer comments can be eliminated by setting the option show_splicer_comments to false. This may be useful
to eliminate the clutter of the splicer comments.

4.7 file_code

The file_code section allows the user to add some additional code to the wrapper which may conflict with
code automatically added by Shroud for typemaps, statements or helpers. While splicer are simple text insertation,
file_code inserts code semantically.

For C wrappers, including header files may duplicate headers added when creating the wrapper. By listing them in a
file_code section instead of a splicer Shroud is able to manage all header files.

For Fortran wrappers, USE statements are managed collectively to avoid redundant USE statements.

file_code:
wraptypemap.h:
c_header: <stdint.h>
cxx_header: <cstdint>

wrapftypemap.f:
f_module:

iso_c_binding:
- C_INT32_T
- C_INT64_T

36 Chapter 4. Input

CHAPTER 5

Pointers and Arrays

Shroud will create code to map between C and Fortran pointers. The interoperability with C features of Fortran 2003
and the call-by-reference feature of Fortran provides most of the features necessary to pass arrays to C++ libraries.
Shroud can also provide additional semantic information. Adding the rank attribute will declare the argument as an
assumed-shape array with the given rank: +rank(2) creates arg(:,:). The +dimension(n) attribute will
instead give an explicit dimension: +dimension(10,20) creates arg(10,20).

Using dimension on intent(in) arguments will use the dimension shape in the Fortran wrapper instead of assumed-
shape. This adds some additional safety since many compiler will warn if the actual argument is too small. This is
useful when the C++ function has an assumed shape. For example, it expects a pointer to 16 elements. The Fortran
wrapper will pass a pointer to contiguous memory with no explicit shape information.

When a function returns a pointer, the default behavior of Shroud is to convert it into a Fortran variable with the
POINTER attribute using c_f_pointer. This can be made explicit by adding +deref(pointer) to the function
declaration in the YAML file. For example, int *getData(void) +deref(pointer) creates the Fortran
function interface

function get_data() result(rv)
integer(C_INT), pointer :: rv

end function get_data

The result of the the Fortran function directly accesses the memory returned from the C++ library.

An array can be returned by adding the dimension attribute to the function. The dimension expression will be used
to provide the shape argument to c_f_pointer. The arguments to dimension are C++ expressions which are
evaluated after the C++ function is called and can be the name of another argument to the function or a call another
C++ function. As a simple example, this declaration returns a pointer to a constant sized array.

- decl: int *returnIntPtrToFixedArray(void) +dimension(10)

Example returnIntPtrToFixedArray shows the generated code.

If the dimension is unknown when the function returns, a type(C_PTR) can be returned with +deref(raw). This
will allow the user to call c_f_pointer once the shape is known. Instead of a Fortran pointer to a scalar, a scalar
can be returned by adding +deref(scalar).

37

shroud Documentation, Release 0.13.0

A common idiom for C++ is to return pointers to memory via arguments. This would be declared as int **arg
+intent(out). By default, Shroud treats the argument similar to a function which returns a pointer: it adds the
deref(pointer) attribute to treats it as a POINTER to a scalar. The dimension attribute can be used to create an array
similar to a function result. If the deref(allocatable) attribute is added, then a Fortran array will be allocated to the size
of dimension attribute and the argument will be copied into the Fortran memory.

A function which returns multiple layers of indirection will return a type(C_PTR). This is also true for function
arguments beyond int **arg +intent(out). This pointer can represent non-contiguous memory and Shroud
has no way to know the extend of each pointer in the array.

A special case is provided for arrays of NULL terminated strings, char **. While this also represents non-contiguous
memory, it is a common idiom and can be processed since the length of each string can be found with strlen. See
example acceptCharArrayIn.

In Python wrappers, Shroud will allocate intent(out) arguments before calling the function. This requires the dimen-
sion attribute which defines the shape and must be known before the function is called. The argument will then be
returned by the function along with the function result and other intent(out) arguments. For example, int **arg
+intent(out)+dimension(n). The value of the dimension attribute is used to define the shape of the array and
must be known before the library function is called. The dimension attribute can include the Fortran intrinsic size to
define the shape in terms of another array.

char * functions are treated differently. By default deref attribute will be set to allocatable. After the C++ function
returns, a CHARACTER variable will be allocated and the contents copied. This will convert a NULL terminated string
into the proper length of Fortran variable. For very long strings or strings with embedded NULL, deref(raw) will
return a type(C_PTR).

void * functions return a type(C_PTR) argument and cannot have deref, dimension, or rank attributes. A
type(C_PTR) argument will be passed by value. For a void ** argument, the type(C_PTR) will be passed by
reference (the default). This will allow the C wrapper to assign a value to the argument. See example passVoidStarStar.

If the C++ library function can also provide the length of the pointer, then its possible to return a Fortran POINTER
or ALLOCATABLE variable. This allows the caller to directly use the returned value of the C++ function. However,
there is a price; the user will have to release the memory if owner(caller) is set. To accomplish this with POINTER
arguments, an additional argument is added to the function which contains information about how to delete the array. If
the argument is declared Fortran ALLOCATABLE, then the value of the C++ pointer are copied into a newly allocated
Fortran array. The C++ memory is deleted by the wrapper and it is the callers responsibility to deallocate the
Fortran array. However, Fortran will release the array automatically under some conditions when the caller function
returns. If owner(library) is set, the Fortran caller never needs to release the memory.

See Memory Management for details of the implementation.

A void pointer may also be used in a C function when any type may be passed in. The attribute assumedtype can be
used to declare a Fortran argument as assumed-type: type(*).

- decl: int passAssumedType(void *arg+assumedtype)

function pass_assumed_type(arg) &
result(SHT_rv) &
bind(C, name="passAssumedType")

use iso_c_binding, only : C_INT, C_PTR
implicit none
type(*) :: arg
integer(C_INT) :: SHT_rv

end function pass_assumed_type

38 Chapter 5. Pointers and Arrays

shroud Documentation, Release 0.13.0

5.1 Memory Management

Shroud will maintain ownership of memory via the owner attribute. It uses the value of the attribute to decided when
to release memory.

Use owner(library) when the library owns the memory and the user should not release it. For example, this is used
when a function returns const std::string & for a reference to a string which is maintained by the library.
Fortran and Python will both get the reference, copy the contents into their own variable (Fortran CHARACTER or
Python str), then return without releasing any memory. This is the default behavior.

Use owner(caller) when the library allocates new memory which is returned to the caller. The caller is then responsible
to release the memory. Fortran and Python can both hold on to the memory and then provide ways to release it using
a C++ callback when it is no longer needed.

For shadow classes with a destructor defined, the destructor will be used to release the memory.

The c_statements may also define a way to destroy memory. For example, std::vector provides the lines:

destructor_name: std_vector_{cxx_T}
destructor:
- std::vector<{cxx_T}> *cxx_ptr = reinterpret_cast<std::vector<{cxx_T}> *>(ptr);
- delete cxx_ptr;

Patterns can be used to provide code to free memory for a wrapped function. The address of the memory to free will
be in the variable void *ptr, which should be referenced in the pattern:

declarations:
- decl: char * getName() +free_pattern(free_getName)

patterns:
free_getName: |

decref(ptr);

Without any explicit destructor_name or pattern, free will be used to release POD pointers; otherwise, delete will
be used.

5.2 C and Fortran

Fortran keeps track of C++ objects with the struct C_capsule_data_type and the bind(C) equivalent
F_capsule_data_type. Their names in the format dictionary default to {C_prefix}SHROUD_capsule_data
and {C_prefix}SHROUD_capsule_data. In the Tutorial these types are defined in typesTutorial.h as:

// helper capsule_CLA_Class1
struct s_CLA_Class1 {

void *addr; /* address of C++ memory */
int idtor; /* index of destructor */

};
typedef struct s_CLA_Class1 CLA_Class1;

And wrapftutorial.f:

! helper capsule_data_helper
type, bind(C) :: CLA_SHROUD_capsule_data

type(C_PTR) :: addr = C_NULL_PTR ! address of C++ memory
integer(C_INT) :: idtor = 0 ! index of destructor

end type CLA_SHROUD_capsule_data

5.1. Memory Management 39

shroud Documentation, Release 0.13.0

addr is the address of the C or C++ variable, such as a char * or std::string *. idtor is a Shroud generated
index of the destructor code defined by destructor_name or the free_pattern attribute. These code segments are col-
lected and written to function C_memory_dtor_function. A value of 0 indicated the memory will not be released and
is used with the owner(library) attribute.

Each class creates its own capsule struct for the C wrapper. This is to provide a measure of type safety in the C API.
All Fortran classes use the same derived type since the user does not directly access the derived type.

A typical destructor function would look like:

// Release library allocated memory.
void TUT_SHROUD_memory_destructor(TUT_SHROUD_capsule_data *cap)
{

void *ptr = cap->addr;
switch (cap->idtor) {
case 0: // --none--
{

// Nothing to delete
break;

}
case 1: // new_string
{

std::string *cxx_ptr = reinterpret_cast<std::string *>(ptr);
delete cxx_ptr;
break;

}
default:
{

// Unexpected case in destructor
break;

}
}
cap->addr = nullptr;
cap->idtor = 0; // avoid deleting again

}

5.2.1 Character and Arrays

In order to create an allocatable copy of a C++ pointer, an additional structure is involved. For example,
getConstStringPtrAlloc returns a pointer to a new string. From strings.yaml:

declarations:
- decl: const std::string * getConstStringPtrAlloc() +owner(library)

The C wrapper calls the function and saves the result along with metadata consisting of the address of the data within
the std::string and its length. The Fortran wrappers allocates its return value to the proper length, then copies
the data from the C++ variable and deletes it.

The metadata for variables are saved in the C struct C_array_type and the bind(C) equivalent F_array_type.:

// helper array_context
struct s_STR_SHROUD_array {

STR_SHROUD_capsule_data cxx; /* address of C++ memory */
union {

const void * base;
const char * ccharp;

} addr;

(continues on next page)

40 Chapter 5. Pointers and Arrays

shroud Documentation, Release 0.13.0

(continued from previous page)

int type; /* type of element */
size_t elem_len; /* bytes-per-item or character len in c++ */
size_t size; /* size of data in c++ */
int rank; /* number of dimensions, 0=scalar */
long shape[7];

};
typedef struct s_STR_SHROUD_array STR_SHROUD_array;

The union for addr makes some assignments easier by removing the need for casts and also aids debugging. The
union is replaced with a single type(C_PTR) for Fortran:

! helper array_context
type, bind(C) :: STR_SHROUD_array

! address of C++ memory
type(STR_SHROUD_capsule_data) :: cxx
! address of data in cxx
type(C_PTR) :: base_addr = C_NULL_PTR
! type of element
integer(C_INT) :: type
! bytes-per-item or character len of data in cxx
integer(C_SIZE_T) :: elem_len = 0_C_SIZE_T
! size of data in cxx
integer(C_SIZE_T) :: size = 0_C_SIZE_T
! number of dimensions
integer(C_INT) :: rank = -1
integer(C_LONG) :: shape(7) = 0

end type STR_SHROUD_array

The C wrapper does not return a std::string pointer. Instead it passes in a C_array_type pointer as an argument.
It calls getConstStringPtrAlloc, saves the results and metadata into the argument. This allows it to be easily
accessed from Fortran. Since the attribute is owner(library), cxx.idtor is set to 0 to avoid deallocating the
memory.

void STR_getConstStringPtrAlloc_bufferify(
STR_SHROUD_array *SHT_rv_cdesc)

{
// splicer begin function.getConstStringPtrAlloc_bufferify
const std::string * SHCXX_rv = getConstStringPtrAlloc();
ShroudStrToArray(SHT_rv_cdesc, SHCXX_rv, 0);
// splicer end function.getConstStringPtrAlloc_bufferify

}

The Fortran wrapper uses the metadata to allocate the return argument to the correct length:

function get_const_string_ptr_alloc() &
result(SHT_rv)

character(len=:), allocatable :: SHT_rv
! splicer begin function.get_const_string_ptr_alloc
type(STR_SHROUD_array) :: SHT_rv_cdesc
call c_get_const_string_ptr_alloc_bufferify(SHT_rv_cdesc)
allocate(character(len=SHT_rv_cdesc%elem_len):: SHT_rv)
call STR_SHROUD_copy_string_and_free(SHT_rv_cdesc, SHT_rv, &

SHT_rv_cdesc%elem_len)
! splicer end function.get_const_string_ptr_alloc

end function get_const_string_ptr_alloc

Finally, the helper function SHROUD_copy_string_and_free is called to set the value of the result and possible

5.2. C and Fortran 41

shroud Documentation, Release 0.13.0

free memory for owner(caller) or intermediate values:

// helper copy_string
// Copy the char* or std::string in context into c_var.
// Called by Fortran to deal with allocatable character.
void STR_ShroudCopyStringAndFree(STR_SHROUD_array *data, char *c_var, size_t c_var_
→˓len) {

const char *cxx_var = data->addr.ccharp;
size_t n = c_var_len;
if (data->elem_len < n) n = data->elem_len;
std::strncpy(c_var, cxx_var, n);
STR_SHROUD_memory_destructor(&data->cxx); // delete data->cxx.addr

}

Note: The three steps of call, allocate, copy could be replaced with a single call by using the further interoperability
with C features of Fortran 2018 (a.k.a TS 29113). This feature allows Fortran ALLOCATABLE variables to be allocated
by C. However, not all compilers currently support that feature. The current Shroud implementation works with Fortran
2003.

5.3 Python

NumPy arrays control garbage collection of C++ memory by creating a PyCapsule as the base object of NumPy
objects. Once the final reference to the NumPy array is removed, the reference count on the PyCapsule is decre-
mented. When 0, the destructor for the capsule is called and releases the C++ memory. This technique is discussed at
[blog1] and [blog2]

5.4 Old

Note: C_finalize is replaced by statement.final

Shroud generated C wrappers do not explicitly delete any memory. However a destructor may be automatically called
for some C++ stl classes. For example, a function which returns a std::string will have its value copied into
Fortran memory since the function’s returned object will be destroyed when the C++ wrapper returns. If a function
returns a char * value, it will also be copied into Fortran memory. But if the caller of the C++ function wants to
transfer ownership of the pointer to its caller, the C++ wrapper will leak the memory.

The C_finalize variable may be used to insert code before returning from the wrapper. Use C_finalize_buf for the
buffer version of wrapped functions.

For example, a function which returns a new string will have to delete it before the C wrapper returns:

std::string * getConstStringPtrLen()
{

std::string * rv = new std::string("getConstStringPtrLen");
return rv;

}

Wrapped as:

42 Chapter 5. Pointers and Arrays

shroud Documentation, Release 0.13.0

- decl: const string * getConstStringPtrLen+len=30()
format:
C_finalize_buf: delete {cxx_var};

The C buffer version of the wrapper is:

void STR_get_const_string_ptr_len_bufferify(char * SHF_rv, int NSHF_rv)
{

const std::string * SHCXX_rv = getConstStringPtrLen();
if (SHCXX_rv->empty()) {

std::memset(SHF_rv, ' ', NSHF_rv);
} else {

ShroudStrCopy(SHF_rv, NSHF_rv, SHCXX_rv->c_str());
}
{

// C_finalize
delete SHCXX_rv;

}
return;

}

The unbuffer version of the function cannot destroy the string since only a pointer to the contents of the string is
returned. It would leak memory when called:

const char * STR_get_const_string_ptr_len()
{

const std::string * SHCXX_rv = getConstStringPtrLen();
const char * SHC_rv = SHCXX_rv->c_str();
return SHC_rv;

}

5.4. Old 43

shroud Documentation, Release 0.13.0

44 Chapter 5. Pointers and Arrays

CHAPTER 6

Types

6.1 Numeric Types

The numeric types usually require no conversion. In this case the type map is mainly used to generate declaration code
for wrappers:

type: int
fields:

c_type: int
cxx_type: int
f_type: integer(C_INT)
f_kind: C_INT
f_module:

iso_c_binding:
- C_INT

f_cast: int({f_var}, C_INT)

One case where a conversion is required is when the Fortran argument is one type and the C++ argument is another.
This may happen when an overloaded function is generated so that a C_INT or C_LONG argument may be passed to
a C++ function function expecting a long. The f_cast field is used to convert the argument to the type expected by
the C++ function.

6.2 Bool

The first thing to notice is that f_c_type is defined. This is the type used in the Fortran interface for the C wrapper.
The type is logical(C_BOOL) while f_type, the type of the Fortran wrapper argument, is logical.

The f_statements section describes code to add into the Fortran wrapper to perform the conversion. c_var and f_var
default to the same value as the argument name. By setting c_local_var, a local variable is generated for the call to
the C wrapper. It will be named SH_{f_var}.

There is no Fortran intrinsic function to convert between default logical and logical(C_BOOL). The pre_call
and post_call sections will insert an assignment statement to allow the compiler to do the conversion.

45

shroud Documentation, Release 0.13.0

If a function returns a bool result then a wrapper is always needed to convert the result. The result section sets
need_wrapper to force the wrapper to be created. By default a function with no argument would not need a wrapper
since there will be no pre_call or post_call code blocks. Only the C interface would be required since Fortran could
call the C function directly.

See example checkBool.

6.3 Char

Any C++ function which has char or std::string arguments or result will create an additional C function which
include additional arguments for the length of the strings. Most Fortran compiler use this convention when passing
CHARACTER arguments. Shroud makes this convention explicit for two reasons:

• It allows an interface to be used. Functions with an interface will not pass the hidden, non-standard length
argument, depending on compiler.

• Returning character argument from C to Fortran is non-portable.

The C wrapper will create a NULL terminated copy a string with the intent(in) attribute. The assumption is that the
trailing blanks are not part of the data but only padding. Return values and intent(out) arguments add a len annotation
with the assumption that the wrapper will copy the result and blank fill the argument so it need to know the declared
length.

A buffer for intent(out) arguments is also create which is one longer than the Fortran string length. This allows space
for a C terminating NULL. This buffer is passed to the C library which will copy into it. Upon return, the buffer is
copied and blank filled into the user’s argument and the intermediate buffer released.

Library functions which return a scalar char have a wrapper generated which pass a char * argument to the C
wrapper where the first element is assigned (*arg a.k.a arg[0]). Returning a char proved to be non-portable
while passing the result by reference works on the tested compilers.

The bufferify function will be named the same as the original function with the option C_bufferify_suffix appended
to the end. The Fortran wrapper will use the original function name, but call the C wrapper which accepts the length
arguments.

Python wrappers may need an additional attribute for intent(out) strings to let Shroud know how much space to pass
to the function. A function may pass a char * argument which the C library will copy into. While this is not a
recommened practice since it’s easy to overwrite memory, Shoud can deal with it by setting the +charlen(n) attribute
where n is the number of character in the array passed to the function. This is required for Python since strings are
inmutable. The buffer will be converted into a Python str object then returned to the user. This is not an issue in
Fortran since the output buffer is passed in by the caller and will have a known size.

By default, a Fortran blank input string will be converted to an empty string before being passed to the C library. i.e. "
" in Fortran is converted to '\0' in C. This behavior can be changed to convert the empty string into a NULL pointer
by setting the +blanknull attribute. This is often more natural for the C library to indicate the absence of a value. The
option F_blanknull can be used to make this the default for all const char * arguments.

On some occasions the copy and null terminate behavior is not wanted. For example, to avoid copying a large buffer or
the memory must be operated on directly. In this case using the attribute +api(capi) will use the native C API instead
of the bufferify API for the argument. The library will need some way to determine the length of the string since it
will not be passed to the C wrapper. As an alternative the bufferify function can be avoided altogether by setting the
F_create_bufferify_function option to false.

The character type maps use the c_statements section to define code which will be inserted into the C wrapper. These
actions vary depending on the intent of in, out, inout and result.

46 Chapter 6. Types

shroud Documentation, Release 0.13.0

6.4 MPI_Comm

MPI_Comm is provided by Shroud and serves as an example of how to wrap a non-native type. MPI provides a Fortran
interface and the ability to convert MPI_comm between Fortran and C. The type map tells Shroud how to use these
routines:

type: MPI_Comm
fields:

cxx_type: MPI_Comm
c_header: mpi.h
c_type: MPI_Fint
f_type: integer
f_kind: C_INT
f_c_type: integer(C_INT)
f_c_module:

iso_c_binding:
- C_INT

cxx_to_c: MPI_Comm_c2f({cxx_var})
c_to_cxx: MPI_Comm_f2c({c_var})

This mapping makes the assumption that integer and integer(C_INT) are the same type.

6.4. MPI_Comm 47

shroud Documentation, Release 0.13.0

48 Chapter 6. Types

CHAPTER 7

Namespaces

Namespaces in C++ are used to ensure the symbols in a library will not conflict with any symbols in another library.
Fortran and Python both use a module to accomplish the same thing.

The global variable namespace is a blank delimited list of namespaces used as the initial namespace. This names-
pace will be used when accessing symbols in the library, but it will not be used when generating names for wrapper
functions.

For example, the library wrapped is associated with the namespace outer. There are three functions all with the
same name, worker. In C++ these functions are accessed by using a fully qualified name: outer::worker,
outer::innter1::worker and outer::inner2::worker.

namespace outer {
namespace inner1 {
void worker();

} // namespace inner1

namespace inner2 {
void worker();

} // namespace inner2

void worker();
} // namespace outer

The YAML file would look like:

library: wrapped
namespace: outer
format:

C_prefix: WWW_

declarations:
- decl: namespace inner1

declarations:
- decl: void worker();

(continues on next page)

49

shroud Documentation, Release 0.13.0

(continued from previous page)

- decl: namespace inner2
declarations:
- decl: void worker();

- decl: void worker();

For each namespace, Shroud will generate a C++ header file, a C++ implementation file, a Fortran file and a Python
file. The nested namespaces are added to the format field C_name_scope.

For the C wrapper, all symbols are globally visible and must be unique. The format fields C_prefix and C_name_scope
are used to generate the names. This will essentially “flatten” the namespaces into legal C identifiers.

void WWW_worker();
void WWW_inner1_worker();
void WWW_inner2_worker();

In Fortran each namespace creates a module. Each module will have a function named worker. This makes the user
responsible for distinguising which implementation of worker is to be called.

subroutine work1
! Use a single module, unambiguous
use wrapped_mod
call worker

end subroutine work1

subroutine work2
! Rename symbol from namespace inner1
use wrapped_mod
use wrapped_inner1_mod, inner_worker => worker
call worker
call inner_worker

end subroutine work2

Each namespace creates a Python module.

import wrapped
wrapped.worker()
wrapped.inner1.worker()

Several fields in the format dictionary are updated for each namespace: namespace_scope, C_name_scope,
F_name_scope.

7.1 std namespace

Shroud has builtin support for std::string and std::vector.

50 Chapter 7. Namespaces

CHAPTER 8

Structs and Classes

All problems in computer science can be solved by another level of indirection. — David Wheeler

While structs and classes are very similar in C++, Shroud wraps them much differently. Shroud treats structs as they
are in C and creates a corresponding derived type for the struct. Shroud wraps classes by creating a shadow class
which holds a pointer to the instance then uses Fortran type bound procedures to implement methods.

8.1 Class

Classes are wrapped by creating a shadow class for the C++ class. A pointer to an instances is saved along with a
memory management flag.

Using the tutorial as an example, a simple class is defined in the C++ header as:

class Class1
{
public:

void Method1() {};
};

And is wrapped in the YAML as:

declarations:
- decl: class Class1

declarations:
- decl: int Method1()
- decl: Class1()
format:

function_suffix: _default
- decl: Class1(int flag)
format:

function_suffix: _flag
- decl: ~Class1() +name(delete)

51

shroud Documentation, Release 0.13.0

While C++ will provide a default constructor and destructor, they must be listed explicitly to wrap them. They are not
assumed since they may be private. The default name of the constructor is ctor. The name can be specified with the
name attribute. If the constructor is overloaded, each constructor must be given the same name attribute.

The function_suffix is added to distinguish overloaded constructors. The default is to have a sequential numeric suffix.
The function_suffix must not be explicitly set to blank since the name is used by the Fortran generic interface.

If no constructor is wrapped, then some other factory method should be available to create instances of the class. There
is no way to create it directly from Fortran.

When the constructor is wrapped the destructor should also be wrapper or some other method should be wrapped to
release the memory.

8.1.1 C

Each class in the YAML file will create a struct in the C wrapper. All of these structs are identical but are named after
the class. This is intended to provide some level of type safety by making it harder to accidently use the wrong class
with a method. Shroud refers to this as a capsule.

// helper capsule_CLA_Class1
struct s_CLA_Class1 {

void *addr; /* address of C++ memory */
int idtor; /* index of destructor */

};
typedef struct s_CLA_Class1 CLA_Class1;

The C wrapper will extract the address of the instance then call the method.

int CLA_Class1_Method1(CLA_Class1 * self)
{

classes::Class1 *SH_this = static_cast<classes::Class1 *>
(self->addr);

// splicer begin class.Class1.method.Method1
int SHC_rv = SH_this->Method1();
return SHC_rv;
// splicer end class.Class1.method.Method1

}

All constructors are very similar. They call the C++ constructor then saves the pointer to the instance. The idtor field
is the index of the destructor maintained by Shroud to destroy the instance.

CLA_Class1 * CLA_Class1_ctor_flag(int flag, CLA_Class1 * SHC_rv)
{

// splicer begin class.Class1.method.ctor_flag
classes::Class1 *SHCXX_rv = new classes::Class1(flag);
SHC_rv->addr = static_cast<void *>(SHCXX_rv);
SHC_rv->idtor = 1;
return SHC_rv;
// splicer end class.Class1.method.ctor_flag

}

Finally the wrapper for the destructor. The addr field is cleared to avoid a dangling pointer.

void CLA_Class1_delete(CLA_Class1 * self)
{

classes::Class1 *SH_this = static_cast<classes::Class1 *>
(self->addr);

(continues on next page)

52 Chapter 8. Structs and Classes

shroud Documentation, Release 0.13.0

(continued from previous page)

// splicer begin class.Class1.method.delete
delete SH_this;
self->addr = nullptr;
// splicer end class.Class1.method.delete

}

A function which returns a class, including constructors, is passed a pointer to a F_capsule_data_type. The argument’s
members are filled in by the function. The function will return a type(C_PTR) which contains the address of the
F_capsule_data_type argument. The prototype for the C wrapper function allows it to be used in expressions similar
to the way that strcpy returns its destination argument. The option C_shadow_result can be set to False to change
the function to return void instead. The Fortran wrapper API will be uneffected.

C++ functions which return const pointers will not create a const C wrapper. This is because the C wapper will return
a pointer to the capsule and not the instance.

8.1.2 Fortran

The Fortran wrapper uses the object-oriented features added in Fortran 2003. There is one derived type for the library
which is used as the capsule. This derived type uses bind(C) since it is passed to the C wrapper. Each class uses the
same capsule derived type since it is considered an implementation detail and the user should not access it. Then each
class creates an additional derived type as the shadow class which contains a capsule and has type-bound procedures
associated with it.

! helper capsule_data_helper
type, bind(C) :: CLA_SHROUD_capsule_data

type(C_PTR) :: addr = C_NULL_PTR ! address of C++ memory
integer(C_INT) :: idtor = 0 ! index of destructor

end type CLA_SHROUD_capsule_data

The capsule is added to the Fortran shadow class. This derived type can contain type-bound procedures and may not
use the bind(C) attribute.

type class1
type(SHROUD_CLA_capsule_data) :: cxxmem

contains
procedure :: delete => class1_delete
procedure :: method1 => class1_method1

end type class1

The wrapper for the method passes the object as the first argument. The argument uses the format field F_this to name
the variable and defaults to obj. It can be renamed if it conflicts with another argument.

function class1_method1(obj) &
result(SHT_rv)

use iso_c_binding, only : C_INT
class(class1) :: obj
integer(C_INT) :: SHT_rv
! splicer begin class.Class1.method.method1
SHT_rv = c_class1_method1(obj%cxxmem)
! splicer end class.Class1.method.method1

end function class1_method1

A generic interface with the same name as the class is created to call the constructors for the class. The constructor
will initialize the Fortran shadow class.

8.1. Class 53

shroud Documentation, Release 0.13.0

interface class1
module procedure class1_ctor_default
module procedure class1_ctor_flag

end interface class1

The Fortran wrapped class can be used very similar to its C++ counterpart.

use classes_mod
type(class1) var ! Create Fortran variable.
integer(C_INT) i
var = class1() ! Allocate C++ class instance.
i = var%method1()
call var%delete

Some additional type-bound procedures are created to allow the user to get and set the address of the C++ memory
directly. This can be used when the address of the instance is created in some other manner and it needs to be used in
Fortran. There is no way to free this memory and it must be released outside of Fortran.

For example, a C++ function creates an instance then passes the address of it to Fortran function worker. The shadow
class is initialized with the address and can then be used in an object-oriented fashion:

subroutine worker(addr) bind(C)
use classes_mod
type(C_PTR), intent(IN) :: addr
type(class1) var
integer(C_INT) i

call var%set_instance(addr)
i = var%method1()

Two instances of the class can be compared using the associated method.

type(class1) var1, var2
var1 = get_class(1) ! A library function to fetch an instance
var2 = get_class(2)
if (var1%associated(var2) then

print *, "Identical instances"
endif

These functions names are controlled by format fields F_name_associated, F_name_instance_get and
F_name_instance_set. If the names are blank, the functions will not be created.

The .eq. operator is also defined.

A full example is at Constructor and Destructor.

8.1.3 Python

An PyObject is created for each C++ class. It constains the same values as the capsule.

typedef struct {
PyObject_HEAD

classes::Class1 * obj;
int idtor;
// splicer begin class.Class1.C_object
// splicer end class.Class1.C_object

} PY_Class1;

54 Chapter 8. Structs and Classes

shroud Documentation, Release 0.13.0

The idtor argument is used to release memory and described at Memory Management. The splicer allows additional
fields to be added by the developer which may be used in function wrappers.

Additional fields can be added to the splicer for custom behavior.

8.2 Chained functions

C++ allows function calls to be chained by returning the this argument. Several functions can be called in succession
on the same object.

auto var = Class1()->returnThis()

The return_this field indicates that the function may be chained so the wrapper can generate appropriate code.

- decl: Class1 * returnThis();
return_this: True

8.2.1 C

The C wrapper returns void instead of a pointer to the this argument.

void CLA_Class1_returnThis(CLA_Class1 * self)
{

classes::Class1 *SH_this = static_cast<classes::Class1 *>
(self->addr);

// splicer begin class.Class1.method.returnThis
SH_this->returnThis();
// splicer end class.Class1.method.returnThis

}

8.2.2 Fortran

Fortran does not permit his behavior. The function is treated as a subroutine.

subroutine class1_return_this(obj)
class(class1) :: obj
! splicer begin class.Class1.method.return_this
call c_class1_return_this(obj%cxxmem)
! splicer end class.Class1.method.return_this

end subroutine class1_return_this

The chaining must be done as a sequence of calls.

use classes_mod
type(class1) var

var = class1()
call var%return_this()

8.2. Chained functions 55

shroud Documentation, Release 0.13.0

8.3 Class static methods

To wrap the method:

class Singleton {
static Singleton& getReference();

};

Use the YAML input:

- decl: class Singleton
declarations:
- decl: static Singleton& getReference()

8.3.1 Fortran

Class static methods are supported using the NOPASS keyword in Fortran.

type singleton
type(CLA_SHROUD_capsule_data) :: cxxmem
! splicer begin class.Singleton.component_part
! splicer end class.Singleton.component_part

contains
procedure, nopass :: get_reference => singleton_get_reference
! splicer begin class.Singleton.type_bound_procedure_part
! splicer end class.Singleton.type_bound_procedure_part

end type singleton

Called from Fortran as:

type(singleton) obj0
obj0 = obj0%get_reference()

Note that obj0 is not assigned a value before the function get_reference is called.

8.4 Class Inheritance

Class inheritance is supported. Note that the subclass declaration uses a colon and must be quoted. Otherwise YAML
will treat it as another mapping entry.

- decl: class Shape
declarations:
- decl: Shape()
- decl: int get_ivar() const

- decl: "class Circle : public Shape"
declarations:
- decl: Circle()

8.4.1 Fortran

Inheritance is implemented using the EXTENDS Fortran keyword. Only single inheritance is supported.

56 Chapter 8. Structs and Classes

shroud Documentation, Release 0.13.0

type shape
type(CLA_SHROUD_capsule_data) :: cxxmem

contains
procedure :: get_ivar => shape_get_ivar

end type shape

type, extends(shape) :: circle
end type circle

8.4.2 Python

Python uses the PyTypeObject.tp_base field.

8.5 Forward Declaration

A class may be forward declared by omitting declarations. All other fields, such as format and optionsmust
be provided on the initial decl of a Class. This will define the type and allow it to be used in following declarations.
The class’s declarations can be added later:

declarations:
- decl: class Class1

options:
foo: True

- decl: class Class2
declarations:
- decl: void accept1(Class1 & arg1)

- decl: class Class1
declarations:
- decl: void accept2(Class2 & arg2)

8.6 Member Variables

For each member variable of a C++ class a C and Fortran wrapper function will be created to get or set the value. The
Python wrapper will create a descriptor. It is not necessary to list all members of the class, only the one which are to
be exposed in the wrapper. private members cannot be wrapped.

class Class1
{
public:

int m_flag;
int m_test;

};

It is added to the YAML file as:

- decl: class Class1
declarations:
- decl: int m_flag +readonly;
- decl: int m_test +name(test);

8.5. Forward Declaration 57

shroud Documentation, Release 0.13.0

The readonly attribute will not create the setter function or descriptor. Python will report:

>>> obj = tutorial.Class1()
>>> obj.m_flag =1
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: attribute 'm_flag' of 'tutorial.Class1' objects is not writable

The name attribute will change the name of generated functions and descriptors. This is helpful when using a naming
convention like m_test and you do not want m_ to be used in the wrappers.

The names of these functions are controlled by the options SH_class_getter_template and SH_class_setter_template.
They are added as additional methods on the class.

For wrapping details see Getter and Setter.

The getter and setter for a member which is a pointer to a native type can use a Fortran pointer if the member is given
the dimension attribute.

- decl: class PointerData
declarations:
- decl: int nitems;
- decl: int *items +dimension(nitems);

Notice that the dimension uses another field in the class. This will create a getter which can be called from Fortran.
Likewise, the setter will require an argument of the same rank as the dimension attribute.

type(PointerData) var
integer(C_INT) :: nitems
integer(C_INT), pointer :: items(:)
integer(C_INT) :: updated(10)

var = PointerData()
nitems = var%get_nitems()
items => var%get_items()

call var%set_items(updated)
var%nitems = size(updated) ! keep nitems and items consistent

The user must be consistent in the use of the getter and setter. For example, item is nitems long, but if the setter
assigns an array which is shorter, the next call to the getter will still create a Fortran pointer which is nitems long.

Another point to note is that the variable updated should have the TARGET attribute since we’re saving its address
in var.

8.7 Struct

Shroud supports both structs and classes. But it treats them much differently. Whereas in C++ a struct and class are
essentially the same thing, Shroud treats structs as a C style struct. They do not have associated methods. This allows
them to be mapped to a Fortran derived type with the bind(C) attribute and a Python NumPy array.

For wrapping purposes, a struct is a C++ class without a vtable. It will contain POD types. Unlike classes where all
member variables do not need to be wrapped, a struct should be fully defined. This is necessary to allow an array of
structs to be created in the wrapper language then passed to C++.

A struct is defined in the yaml file as:

58 Chapter 8. Structs and Classes

shroud Documentation, Release 0.13.0

- decl: struct Cstruct1
declarations:
- decl: int ifield;
- decl: double dfield;

It can also be defined as one decl entry:

- decl: struct Cstruct1 {
int ifield;
double dfield;

};

The struct statement can can also be used to declare a variable of a previously defined structure. This is required
for C but is optional for C++ where a struct statement defines a type. To distinguish a variable declaration from a
struct declaration, the trailing semicolon is required.

- decl: struct Cstruct1 var;

8.7.1 Fortran

This is translated directly into a Fortran derived type with the bind(C) attribute.

type, bind(C) :: cstruct1
integer(C_INT) :: ifield
real(C_DOUBLE) :: dfield

end type cstruct1

All creation and access of members can be done using Fortran.

type(cstruct1) st(2)

st(1)%ifield = 1_C_INT
st(1)%dfield = 1.5_C_DOUBLE
st(2)%ifield = 2_C_INT
st(2)%dfield = 2.6_C_DOUBLE

8.7.2 Python

Python can treat a struct in several different ways by setting option PY_struct_arg. First, treat it the same as a class.
An extension type is created with descriptors for the field methods. Second, as a numpy descriptor. This allows an
array of structs to be used easily. Finally, as a tuple of Python objects.

When treated as a class, a constructor is created which will create an instance of the class. This is similar to the default
constructor for structs in C++ but will also work with a C struct.

import cstruct
a = cstruct.Cstruct1(1, 2.5)
a = cstruct.Cstruct1()

When treated as a NumPy array no memory will be copied since the NumPy array contains a pointer to the C++
memory.

8.7. Struct 59

shroud Documentation, Release 0.13.0

import cstruct
dt = cstruct.Cstruct1_dtype
a = np.array([(1, 1.5), (2, 2.6)], dtype=dt)

The descriptor is created in the wrapper NumPy Struct Descriptor.

8.7.3 Member Variables

Generally, getter and setter functions are not required since Fortran can directly access the member fields. But when
the member is a pointer it is more convient to have a getter and setter which works with Fortran pointers.

struct PointerData
{

int nitems;
int *items;

};

The generated getter and setter are not type-bound functions and must be passed the struct variable:

type(PointerData) var
integer(C_INT) :: nitems
integer(C_INT) :: items(10)
integer(C_INT), pointer :: out(:)

var%nitems = 10
call pointerdata_set_items(var, items)

out => pointerdata_get_items(var)

The names of these functions are controlled by the options SH_struct_getter_template and SH_struct_setter_template.
They are added to the same scope as the struct.

Option F_struct_getter_setter can be set to false to avoid creating the getter and setter functions.

8.8 Object-oriented C

Object oriented programing is a model and not a language feature. This model has been used for years in C by
creating a struct for the object, then functions for the methods. C++ will implicitly pass the this argument. C
methods explicitly pass the struct as an argument. Fortran and Python both pass an explicit object then wrap it in
syntacatic sugar to allow a self.method() syntax to be used. Shroud allows a struct and collection of functions to
be treated as a class.

First, define a struct and set the wrap_struct_as options to class.

- decl: struct Cstruct_as_class {
int x1;
int y1;

};
options:
wrap_struct_as: class

Create a constructor function. The class_ctor options associates this with the struct.

60 Chapter 8. Structs and Classes

shroud Documentation, Release 0.13.0

- decl: Cstruct_as_class *Create_Cstruct_as_class(void)
options:
class_ctor: Cstruct_as_class

Then add methods. The class_method option associates this with the struct. The format field F_name_function is used
to name the method. The default method name is the same as the function name. But since this name will be used in
the context of the object, it can be much shorter. The pass attribute marks this as the ‘object’.

- decl: int Cstruct_as_class_sum(const Cstruct_as_class *point +pass)
options:
wrap_python: False
class_method: Cstruct_as_class

format:
F_name_function: sum

Additonal options are wrap_class_as and class_baseclass.

8.8.1 Fortran

A shadow class is created for the struct. This is the same as wrapping a C++ class. Getters and setters are created for
the member variable. And the sum method is added.

type cstruct_as_class
type(STR_SHROUD_capsule_data) :: cxxmem
! splicer begin class.Cstruct_as_class.component_part
! splicer end class.Cstruct_as_class.component_part

contains
procedure :: get_x1 => cstruct_as_class_get_x1
procedure :: set_x1 => cstruct_as_class_set_x1
procedure :: get_y1 => cstruct_as_class_get_y1
procedure :: set_y1 => cstruct_as_class_set_y1
procedure :: sum => cstruct_as_class_sum
! splicer begin class.Cstruct_as_class.type_bound_procedure_part
! splicer end class.Cstruct_as_class.type_bound_procedure_part

end type cstruct_as_class

Now the struct is treated as a class in the Fortran wrapper.

use struct_mod
type(cstruct_as_class) var ! Create Fortran variable.
integer(C_INT) i
var = cstruct_as_class() ! Create struct in C++.
i = var%sum()

Similar to Python, Fortran passes the object as an explicit argument. Unlike C++ which uses an implicit this variable.
By default, the first argument of the function is assumed to be the object. However, this can be changed using the pass
attribute. This will add the Fortran keyword PASS to the corresponding argument.

A full example is at Struct as a Class.

8.8. Object-oriented C 61

shroud Documentation, Release 0.13.0

62 Chapter 8. Structs and Classes

CHAPTER 9

Default Arguments

Default arguments allows a C++ function to be called without providing one or more trailing arguments. Shroud can
handle default args in several different ways based on the value of option F_default_args.

9.1 Generic Default Arguments

Since a default argument can have any C++ value, the C++ compiler must be used to provide the values. Shroud does
this by creating a function for each possible way to call the function. These functions are then combined into a generic
interface with the C++ function name. This is the default behavior of Shroud but can be made explicit by setting option
F_default_args to generic.

For example, the function

void apply(IndexType num_elems, IndexType offset = 0, IndexType stride = 1);

can be called with 1, 2 or 3 arguments. C wrapper functions are created with the prototypes:

void apply(IndexType num_elems);
void apply(IndexType num_elems, IndexType offset);
void apply(IndexType num_elems, IndexType offset, IndexType stride);

The C++ compiler will provided the missing arguments using the default values.

The generated functions will have the same name as the C++ function with a suffix added to create unique names. By
default this is a integer sequence number. The suffix can be controlled by adding a default_arg_suffix entry to the
YAML file. One suffix is provided for each generated overloaded function.

- decl: void apply(IndexType num_elems, IndexType offset = 0, IndexType stride = 1);
default_arg_suffix:
- _nelems
- _nelems_offset
- _nelems_offset_stride

63

shroud Documentation, Release 0.13.0

9.2 Require Default Arguments

Shroud provides the option to require all arguments by setting F_default_args to require. This is intended to help
when there are overloaded functions with default arguments. The Fortran type system is not a rich as C++ and some
Fortran generic function may be ambiguous. This can happen since C++ enum is converted to an integer.

9.3 Optional Default Arguments

When the default values can be represented in Fortran the OPTIONAL attribute can be used with default arguments to
allow the Fortran wrapper to supply the value for arguments which are not present in the call to the function. This is
generated when the option F_default_args is set to optional. No overloaded functions are generated. The C wrapper
will require all arguments to be provided.

This provides the ability to call the function from Fortran in a way not supported by C++. Each argument can be
provided individually using keyword arguments. The function can be called as

call apply(100, stride=2)

and offset will be provided the default value of 0.

Since the value is provided by Fortran, this only works with integer and real values.

64 Chapter 9. Default Arguments

CHAPTER 10

Templates

Shroud will wrap templated classes and functions for explicit instantiations. The template is given as part of the decl
and the instantations are listed in the cxx_template section:

- decl: |
template<typename ArgType>
void TemplateArgument(ArgType arg)

cxx_template:
- instantiation: <int>
- instantiation: <double>

options and format may be provide to control the generated code:

- decl: template<typename T> class vector
cxx_header: <vector>
cxx_template:
- instantiation: <int>
format:

C_impl_filename: wrapvectorforint.cpp
options:
optblah: two

- instantiation: <double>

For a class template, the class_name is modified to included the instantion type. If only a single template pa-
rameter is provided, then the template argument is used. For the above example, C_impl_filename will default to
wrapvector_int.cpp but has been explicitly changed to wrapvectorforint.cpp.

Functions can be created which return a templated class:

- decl: vector<int> getVector()

The result type must be instantiated via the cxx_template block before it can be used.

65

shroud Documentation, Release 0.13.0

66 Chapter 10. Templates

CHAPTER 11

Declarations

In order for Shroud to create an idiomatic wrapper, it needs to know how arguments are intended to be used. This
information is supplied via attributes. This section describes how to describe the arguments to Shroud in order to
implement the desired semantic.

11.1 No Arguments

A C function with no arguments and which does not return a value, can be “wrapped” by creating a Fortran interface
which allows the function to be called directly. A C++ function will require an extern C function to create an C
wrapper to deal with the C++ name mangling.

An example is detailed at NoReturnNoArguments.

11.2 Numeric Arguments

Integer and floating point numbers are supported by the interoperabilty with C feature of Fortran 2003. This includes
the integer types short, int, long and long long. Size specific types int8_t, int16_t, int32_t, and
int64_t are also supported. Floating point types are float and double.

Note: Fortran has no support for unsigned types. size_t will be the correct number of bytes, but will be signed.

In the following examples, int can be replaced by any numeric type.

int arg Pass a numeric value to C. The attribute intent(in) is defaulted. The Fortran 2003 attribute VALUE
is used to change from Fortran’s default call-by-reference to C’s call-by-value. This argument can be called
directly by Fortran and no C wrapper is necessary. See example PassByValue.

const int *arg Scalar call-by-reference. const pointers are defaulted to +intent(in).

int *arg +intent(out) If the intent is to return a scalar value from a function, add the intent(out) at-
tribute. See example PassByReference.

67

shroud Documentation, Release 0.13.0

const int *arg +rank(1) The rank(1) attribute will create an assumed-shape Fortran dimension for the
argument as arg(:). The C library function needs to have some way to determine the length of the array. The
length could be assumed by the library function. A better option is to add another argument which will explicitly
pass the length of the array from Fortran - int larg+implied(size(arg)). An implied argument will
not be part of the wrapped API but will still be passed to the C++ function. See example Sum.

int *arg +intent(out)+deref(allocatable)+dimension(n) Adds the Fortran attribute
ALLOCATABLE to the argument, then use the ALLOCATE statment to allocate memory using dimension
attribute as the shape. See example truncate_to_int.

intent **arg +intent(out) Return a pointer in an argument. This is converted into a Fortran POINTER to
a scalar. See example getPtrToScalar.

intent **arg +intent(out)+dimension(ncount) Return a pointer in an argument. This is converted
into a Fortran POINTER to an array by the dimension attribute. See example getPtrToDynamicArray.

intent **arg +intent(out)+deref(raw) Return a pointer in an argument. The Fortran argument
will be a type(C_PTR). This gives the caller the flexibility to dereference the pointer themselves using
c_f_pointer. This is useful when the shape is not know when the function is called. See example ge-
tRawPtrToFixedArray.

int ***arg +intent(out) Pointers nested to a deeper level are treated as a Fortran type(C_PTR) argument.
This gives the user the most flexibility. The type(C_PTR) can be passed back to to library which should know
how to cast it. There is no checks on the pointer before passing it to the library so it’s very easy to pass bad values.
The user can also explicitly dereferences the pointers using c_f_pointer. See example getRawPtrToInt2d.

int **arg +intent(in) Multiple levels of indirection are converted into a type(C_PTR) argument. See
below for an exception for char **. See example checkInt2d.

int &min +intent(out) A declaration to a scalar gets converted into pointers in the C wrapper. See example
getMinMax.

int *&arg Return a pointer in an argument. From Fortran, this is the same as int **arg. See above examples.

11.3 Numeric Functions

int *func() Return a Fortran POINTER to a scalar. See example returnIntPtrToScalar.

int *func() +dimension(10) Return a Fortran POINTER to an array with a fixed length. See example
returnIntPtrToFixedArray.

int *func() +deref(scalar) Return a scalar. See example returnIntScalar.

int *ReturnIntPtrDimPointer(int *len+intent(out)+hidden) +dimension(len) +deref(pointer)
Return a Fortran POINTER to an array with a variable length. The length is returned in the argument len.
It is marked hidden since it is not required for the Fortran or Python API. The returned array will know its
length. See example ReturnIntPtrDimPointer The deref attribute can be changed to return a type(C_PTR),
ALLOCATABLE or a scalar. See example ReturnIntPtrDimAlloc

11.4 Bool

C and C++ functions with a bool argument generate a Fortran wrapper with a logical argument. One of the
goals of Shroud is to produce an idiomatic interface. Converting the types in the wrapper avoids the awkwardness
of requiring the Fortran user to passing in .true._c_bool instead of just .true.. Using an integer for a bool
argument is not portable since some compilers use 1 for .true. and others use -1.

bool arg Non-pointer arguments default to intent(IN). See example checkBool.

68 Chapter 11. Declarations

shroud Documentation, Release 0.13.0

11.5 Char

Fortran, C, and C++ each have their own semantics for character variables.

• Fortran character variables know their length and are blank filled

• C char * variables are assumed to be NULL terminated.

• C++ std::string know their own length and can provide a NULL terminated pointer.

It is not sufficient to pass an address between Fortran and C++ like it is with other native types. In order to get idiomatic
behavior in the Fortran wrappers it is often necessary to copy the values. This is to account for blank filled vs NULL
terminated.

const char *arg Create a NULL terminated string in Fortran using trim(arg)//C_NULL_CHAR and pass to
C. Since the argument is const, it is treated as intent(in). A bufferify function is not required to convert
the argument. This is the same as char *arg+intent(in). See example acceptName.

char *arg Pass a char pointer to a function which assign to the memory. arg must be NULL terminated by the
function. Add the intent(out) attribute. The bufferify function will then blank-fill the string to the length of
the Fortran CHARACTER(*) argument. It is the users responsibility to avoid overwriting the argument. See
example returnOneName.

Fortran must provide a CHARACTER argument which is at least as long as the amount that the C function will
write into. This includes space for the terminating NULL which will be converted into a blank for Fortran.

char *arg, int larg Similar to above, but pass in the length of arg. The argument larg does not need
to be passed to Fortran explicitly since its value is implied. The implied attribute is defined to use the len
Fortran intrinsic to pass the length of arg as the value of larg: char *arg+intent(out), int
larg+implied(len(arg)). See example ImpliedTextLen.

char **names +intent(in) This is a standard C idiom for an array of NULL terminated strings. Shroud takes
an array of CHARACTER(len=*) arg(:) and creates the C data structure by copying the data and adding
the terminating NULL. See example acceptCharArrayIn.

11.6 std::string

std::string & arg arg will default to intent(inout). See example acceptStringReference.

11.7 char functions

Functions which return a char * provide an additional challenge. Taken literally they should return a
type(C_PTR). And if you call the C library function via the interface, that’s what you get. However, Shroud
provides several options to provide a more idiomatic usage.

Each of these declaration call identical C++ functions but they are wrapped differently.

char *getCharPtr1 Return a pointer and convert into an ALLOCATABLE CHARACTER variable. Fortran 2003
is required. The Fortran application is responsible to release the memory. However, this may be done automati-
cally by the Fortran runtime. See example getCharPtr1.

char *getCharPtr2 Create a Fortran function which returns a predefined CHARACTER value. The size is deter-
mined by the len argument on the function. This is useful when the maximum size is already known. Works
with Fortran 90. See example getCharPtr2.

11.5. Char 69

shroud Documentation, Release 0.13.0

char *getCharPtr3 Create a Fortran subroutine with an additional CHARACTER argument for the C function
result. Any size character string can be returned limited by the size of the Fortran argument. The argument is
defined by the F_string_result_as_arg format string. Works with Fortran 90. See example getCharPtr3.

11.8 string functions

Functions which return std::string values are similar but must provide the extra step of converting the result into
a char *.

const string & See example getConstStringRefPure.

11.9 std::vector

A std::vector argument for a C++ function can be created from a Fortran array. The address and size of the array
is extracted and passed to the C wrapper to create the std::vector

const std::vector<int> &arg arg defaults to intent(in) since it is const. See example vector_sum.

std::vector<int> &arg See example vector_iota_out.

See example vector_iota_out_alloc.

See example vector_iota_inout_alloc.

On intent(in), the std::vector constructor copies the values from the input pointer. With intent(out),
the values are copied after calling the function.

Note: With intent(out), if vector_iota changes the size of arg to be longer than the original size of the Fortran
argument, the additional values will not be copied.

11.10 Void Pointers

The Fortran 2003 stardard added the type(C_PTR) derived type which is used to hold a C void *. Fortran is not
able to directly dereference type(C_PTR) variables. The function c_f_pointer must be used.

void *arg If the intent is to be able to pass any variable to the function, add the +assumedtype attribute.
type(*) is only available with TS 29113. The Fortran wrapper will only accept scalar arguments. To pass an
array, add the dimension attribute See examples passAssumedType and passAssumedTypeDim.

void *arg Passes the value of a type(C_PTR) argument. See example passVoidStarStar.

void **arg Used to return a void * from a function in an argument. Passes the address of a type(C_PTR)
argument. See example passVoidStarStar.

11.11 Function Pointers

C or C++ arguments which are pointers to functions are supported. The function pointer type is wrapped using a
Fortran abstract interface. Only C compatible arguments in the function pointer are supported since no
wrapper for the function pointer is created. It must be callable directly from Fortran.

70 Chapter 11. Declarations

shroud Documentation, Release 0.13.0

int (*incr)(int) Create a Fortran abstract interface for the function pointer. Only functions which match the
interface can be used as a dummy argument. See example callback1.

void (*incr)() Adding the external attribute will allow any function to be passed. In C this is accomplished
by using a cast. See example callback1c.

The abstract interface is named from option F_abstract_interface_subprogram_template which defaults
to {underscore_name}_{argname} where argname is the name of the function argument.

If the function pointer uses an abstract declarator (no argument name), the argument name is created from option
F_abstract_interface_argument_template which defaults to arg{index} where index is the 0-based argument
index. When a name is given to a function pointer argument, it is always used in the abstract interface.

To change the name of the subprogram or argument, change the option. There are no format fields
F_abstract_interface_subprogram or F_abstract_interface_argument since they vary by argument (or argument
to an argument):

options:
F_abstract_interface_subprogram_template: custom_funptr
F_abstract_interface_argument_template: XX{index}arg

It is also possible to pass a function which will accept any function interface as the dummy argument. This is done by
adding the external attribute. A Fortran wrapper function is created with an external declaration for the argument.
The C function is called via an interace with the bind(C) attribute. In the interface, an abstract interface
for the function pointer argument is used. The user’s library is responsible for calling the argument correctly since the
interface is not preserved by the external declaration.

11.12 Struct

See example passStruct1.

See example passStructByValue.

11.12. Struct 71

shroud Documentation, Release 0.13.0

72 Chapter 11. Declarations

CHAPTER 12

Output

12.1 What files are created

Shroud will create multiple output file which must be compiled with C++ or Fortran compilers.

One C++ file will be created for the library and one file for each C++ class. In addition a utility file will be created
with routines which are implemented in C but called from Fortran. This includes some memory management routines.

Fortran creates a file for the library and one per additional namespace. Since Fortran does not support forward refer-
encing of derived types, it is necessary to add all classes from a namespace into a single module.

Each Fortran file will only contain one module to make it easier to create makefile dependencies using pattern rules:

%.o %.mod : %.f

File names for the header and implementation files can be set explicitly by setting variables in the format of the global
or class scope:

format:
C_header_filename: top.h
C_impl_filename: top.cpp
F_impl_filename: top.f

declarations:
- decl: class Names

format:
C_header_filename: foo.h
C_impl_filename: foo.cpp
F_impl_filename: foo.f

The default file names are controlled by global options. The option values can be changed to avoid setting the name
for each class file explicitly. It’s also possible to change just the suffix of files:

options:
YAML_type_filename_template: {library_lower}_types.yaml

(continues on next page)

73

shroud Documentation, Release 0.13.0

(continued from previous page)

C_header_filename_suffix: h
C_impl_filename_suffix: cpp
C_header_filename_library_template: wrap{library}.{C_header_filename_suffix}
C_impl_filename_library_template: wrap{library}.{C_impl_filename_suffix}

C_header_filename_namespace_template: wrap{file_scope}.{C_header_file_suffix}
C_impl_filename_namespace_template: wrap{file_scope}.{C_impl_filename_suffix}

C_header_filename_class_template: wrap{cxx_class}.{C_header_file_suffix}
C_impl_filename_class_template: wrap{cxx_class}.{C_impl_filename_suffix}

F_filename_suffix: f
F_impl_filename_library_template: wrapf{library_lower}.{F_filename_suffix}
F_impl_filename_namespace_template: wrapf{file_scope}.{F_filename_suffix}

A file with helper functions may also be created. For C the file is named by the format field C_impl_utility. It contains
files which are implemented in C but are called from Fortran via BIND(C).

12.2 How names are created

Shroud attempts to provide user control of names while providing reasonable defaults. Each name is based on the
library, class, function or argument name in the current scope. Most names have a template which may be used to
control how the names are generated on a global scale. Many names may also be explicitly specified by a field.

For example, a library has an initialize function which is in a namespace. In C++ it is called as:

#include "library.hpp"

library::initialize()

By default this will be a function in a Fortran module and can be called as:

use library

call initialize

Since initialize is a rather common name for a function, it may be desirable to rename the Fortran wrapper to
something more specific. The name of the Fortran implementation wrapper can be changed by setting F_name_impl:

library: library

declarations:
- decl: namespace library

declarations:
- decl: void initialize
format:

F_name_impl: library_initialize

To rename all functions, set the template in the toplevel options:

library: library

options:
(continues on next page)

74 Chapter 12. Output

shroud Documentation, Release 0.13.0

(continued from previous page)

F_name_impl_template: "{library}_{underscore_name}{function_suffix}"

declarations:
- decl: namespace library

declarations:
- decl: void initialize

C++ allows allows overloaded functions and will mangle the names behind the scenes. With Fortran, the mangling
must be explicit. To accomplish this Shroud uses the function_suffix format string. By default, Shroud will use a
sequence number. By explicitly setting function_suffix, a more meaningful name can be provided:

- decl: void Function6(const std::string& name)
format:
function_suffix: _from_name

- decl: void Function6(int indx)
format:
function_suffix: _from_index

This will create the Fortran functions function6_from_name and function6_from_index. A generic in-
terface named function6 will also be created which will include the two generated functions.

Likewise, default arguments will produce several Fortran wrappers and a generic interface for a single C++ function.
The format dictionary only allows for a single function_default per function. Instead the field default_arg_suffix can
be set. It contains a list of function_suffix values which will be applied from the minimum to the maximum number of
arguments:

- decl: int overload1(int num,
int offset = 0, int stride = 1)

default_arg_suffix:
- _num
- _num_offset
- _num_offset_stride

Finally, multiple Fortran wrappers can be generated from a single templated function. Each instantiation will generate
an additional Fortran Wrapper and can be distinguished by the template_suffix entry of the format dictionary.

If there is a single template argument, then template_suffix will be set to the flat_name field of the instantiated argu-
ment. For example, <int> defaults to _int. This works well for POD types. The entire qualified name is used. For
<std::string> this would be std_string. Classes which are deeply nested can produce very long values for
template_suffix. To deal with this, the function_template field can be set on Class declarations:

- decl: namespace internal
declarations:
- decl: class ImplWorker1
format:

template_suffix: instantiation3

By default internal_implworker1 would be used for the template_suffix. But in this case instantiation3
will be used.

For multiple template arguments, template_suffix defaults to a sequence number to avoid long function names. In this
case, specifying an explicit template_suffix can produce a more user friendly name:

- decl: template<T,U> void FunctionTU(T arg1, U arg2)
cxx_template:
- instantiation: <int, long>

(continues on next page)

12.2. How names are created 75

shroud Documentation, Release 0.13.0

(continued from previous page)

format:
template_suffix: instantiation1

- instantiation: <float, double>
format:

template_suffix: instantiation2

The Fortran functions will be named function_tu_instantiation1 and function_tu_instantiation2.

12.3 Additional Wrapper Functions

Functions can be created in the Fortran wrapper which have no corresponding function in the C++ library. This may
be necessary to add functionality which may unnecessary in C++. For example, a library provides a function which
returns a string reference to a name. If only the length is desired no extra function is required in C++ since the length
is extracted used a std::string method:

ExClass1 obj("name")
int len = obj.getName().length();

Calling the Fortran getName wrapper will copy the string into a Fortran array but you need the length first to make
sure there is enough room. You can create a Fortran wrapper to get the length without adding to the C++ library:

declarations:
- decl: class ExClass1

declarations:
- decl: int GetNameLength() const
format:

C_code: |
{C_pre_call}
return {CXX_this}->getName().length();

The generated C wrapper will use the C_code provided for the body:

int AA_exclass1_get_name_length(const AA_exclass1 * self)
{

const ExClass1 *SH_this = static_cast<const ExClass1 *>(
static_cast<const void *>(self));

return SH_this->getName().length();
}

The C_pre_call format string is generated by Shroud to convert the self argument into CXX_this and must be
included in C_code to get the definition.

12.4 Helper functions

Shroud provides some additional file static function which are inserted at the beginning of the wrapped code.
Some helper functions are used to communicate between C and Fortran. They are global and written into the
fmt.C_impl_utility file. The names of these files will have C_prefix prefixed to create unique names.

C helper functions

ShroudStrCopy(char *dest, int ndest, const char *src, int nsrc) Copy src into dest,
blank fill to ndest characters Truncate if dest is too short to hold all of src. dest will not be NULL terminated.

76 Chapter 12. Output

shroud Documentation, Release 0.13.0

int ShroudLenTrim(const char *src, int nsrc) Returns the length of character string src with
length nsrc, ignoring any trailing blanks.

Each Python helper is prefixed by format variable PY_helper_prefix which defaults to SHROUD_. This is used to avoid
conflict with other wrapped functions.

The option PY_write_helper_in_util will write all of the helper fuctions into the file defined by PY_utility_filename.
This can be useful to avoid clutter when there are a lot of classes which may create lots of duplicate helpers. The
helpers will no longer be file static and instead will also be prefixed with C_prefix to avoid conflicting with helpers
created by another Shroud wrapped library.

12.4.1 Header Files

The header files for the library are included by the generated C++ source files.

The library source file will include the global cxx_header field. Each class source file will include the class cxx_header
field unless it is blank. In that case the global cxx_header field will be used.

To include a file in the implementation list it in the global or class options:

cxx_header: global_header.hpp

declarations:
- decl: class Class1

cxx_header: class_header.hpp

- decl: typedef int CustomType
c_header: type_header.h
cxx_header : type_header.hpp

The c_header field will be added to the header file of contains functions which reference the type. This is used for
files which are not part of the library but which contain code which helps map C++ constants to C constants

A global fortran_header field will insert #include lines to be used with the Fortran preprocessor (typically a variant
of the C preprocessor). This will work with the cpp_if lines in declarations which will conditionally compile a
wrapper.

12.4.2 Local Variable

SH_ prefix on local variables which are created for a corresponding argument. For example the argument char *name,
may need to create a local variable named std::string SH_name.

Shroud also generates some code which requires local variables such as loop indexes. These are prefixed with SHT_.
This name is controlled by the format variable c_temp.

Results are named from fmt.C_result or fmt.F_result.

Format variable which control names are

• c_temp

• C_local

• C_this

• CXX_local

• CXX_this

• C_result

12.4. Helper functions 77

shroud Documentation, Release 0.13.0

• F_result - SHT_rv (return value)

• F_this - obj

• LUA_result

• PY_result

12.5 C Preprocessor

It is possible to add C preprocessor conditional compilation directives to the generated source. For example, if a
function should only be wrapped if USE_MPI is defined the cpp_if field can be used:

- decl: void testmpi(MPI_Comm comm)
format:
function_suffix: _mpi

cpp_if: ifdef HAVE_MPI
- decl: void testmpi()

format:
function_suffix: _serial

cpp_if: ifndef HAVE_MPI

The function wrappers will be created within #ifdef/#endif directives. This includes the C wrapper, the Fortran
interface and the Fortran wrapper. The generated Fortran interface will be:

interface testmpi
#ifdef HAVE_MPI

module procedure testmpi_mpi
#endif
#ifndef HAVE_MPI

module procedure testmpi_serial
#endif

end interface testmpi

Class generic type-bound function will also insert conditional compilation directives:

- decl: class ExClass3
cpp_if: ifdef USE_CLASS3
declarations:
- decl: void exfunc()
cpp_if: ifdef USE_CLASS3_A

- decl: void exfunc(int flag)
cpp_if: ifndef USE_CLASS3_A

The generated type will be:

type exclass3
type(SHROUD_capsule_data), private :: cxxmem

contains
procedure :: exfunc_0 => exclass3_exfunc_0
procedure :: exfunc_1 => exclass3_exfunc_1

#ifdef USE_CLASS3_A
generic :: exfunc => exfunc_0

#endif
#ifndef USE_CLASS3_A

generic :: exfunc => exfunc_1

(continues on next page)

78 Chapter 12. Output

shroud Documentation, Release 0.13.0

(continued from previous page)

#endif
end type exclass3

A cpp_if field in a class will add a conditional directive around the entire class.

Finally, cpp_if can be used with types. This would be required in the first example since mpi.h should only be
included when USE_MPI is defined:

typemaps:
- type: MPI_Comm

fields:
cpp_if: ifdef USE_MPI

When using cpp_if, it is useful to set the option F_filename_suffix to F. This will cause most compilers to
process the Fortran souce with cpp before compilation. The fortran_header field can be added to the YAML
file to insert #include directives at the top of the Fortran source files.

The typemaps field can only appear at the outermost layer and is used to augment existing typemaps.

12.6 Debugging

Shroud generates a JSON file with all of the input from the YAML and all of the format dictionaries and type maps.
This file can be useful to see which format keys are available and how code is generated.

12.6. Debugging 79

shroud Documentation, Release 0.13.0

80 Chapter 12. Output

CHAPTER 13

C and C++

A C API is created for a C++ library. Wrapper functions are within an extern "C" block so they may be called by
C or Fortran. But the file must be compiled with the C++ compiler since it is wrapping a C++ library.

When wrapping a C library, additional functions may be created which pass meta-data arguments. When called from
Fortran, its wrappers will provide the meta-data. When called directly by a C application, the meta-data must be
provided by the user.

13.1 Names

Shroud will flatten scoped C++ library names to create the C API. Since C does not support scopes such as classes
and namespaces, a name such as ns1::function must be flattened into ns1_function to avoid conflict with a
similarly named function ns2::function.

Names are also contolled by the C_api_case option. It can be set to lower, upper, underscore or preserve. This option
is used to set the format field C_name_api which in turn is used in the option C_name_template. The default is
preserve. This creates a stronger correlation between the C API and the C++ API.

To further help control the scope of C names, all externals add a prefix. It defaults to the first three letters of the library
but may be changed by setting the format C_prefix:

format:
C_prefix: NEW_

13.2 Wrapper

As each function declaration is parsed a format dictionary is created with fields to describe the function and its argu-
ments. The fields are then expanded into the function wrapper.

C wrapper:

81

shroud Documentation, Release 0.13.0

extern "C" {

{C_return_type} {C_name}({C_prototype})
{

{C_code}
}

}

The wrapper is within an extern "C" block so that C_name will not be mangled by the C++ compiler.

C_return_code can be set from the YAML file to override the return value:

- decl: void vector_string_fill(std::vector< std::string > &arg+intent(out))
format:

C_return_type: int
C_return_code: return SH_arg.size();

The C wrapper (and the Fortran wrapper) will return int instead of void using C_return_code to compute the value.
In this case, the wrapper will return the size of the vector. This is useful since C and Fortran convert the vector into an
array.

13.3 Struct Type

While C++ considers a struct and a class to be similar, Shroud assumes a struct is intended to be a C compatible data
structure. It has no methods which will cause a v-table to be created. This will cause an array of structs to be identical
in C and C++.

The main use of wrapping a struct for C is to provide access to the name. If the struct is defined within a namespace,
then a C application will be unable to access the struct. Shroud creates an identical struct as the one defined in the
YAML file but at the global level.

13.4 Class Types

A C++ class is represented by the C_capsule_data_type. This struct contains a pointer to the C++ instance allocated
and an index passed to generated C_memory_dtor_function used to destroy the memory:

struct s_{C_capsule_data_type} {
void *addr; /* address of C++ memory */
int idtor; /* index of destructor */

};
typedef struct s_{C_capsule_data_type} {C_capsule_data_type};

In addition, an identical struct is created for each class. Having a unique struct and typedef for each class add a
measure of type safety to the C wrapper:

struct s_{C_type_name} {
void *addr; /* address of C++ memory */
int idtor; /* index of destructor */

};
typedef struct s_{C_type_name} {C_type_name};

idtor is the index of the destructor code. It is used with memory managerment and discussed in Memory Manage-
ment.

82 Chapter 13. C and C++

shroud Documentation, Release 0.13.0

The C wrapper for a function which returns a class instance will return a C_capsule_data_type by value. Functions
which take a class instance will receive a pointer to a C_capsule_data_type.

13.4. Class Types 83

shroud Documentation, Release 0.13.0

84 Chapter 13. C and C++

CHAPTER 14

Fortran

This section discusses Fortran specific wrapper details. This will also include some C wrapper details since some C
wrappers are created specificially to be called by Fortran.

14.1 Names

There are several options to mangle the C++ library names into Fortran names. By default, names are mangled to
convert camel case into snake case. For example, StructAsClass into struct_as_class. Since Fortran is
case insensitive, StructAsClass and structasclass are equivalent. By using snake case, the identifier should
be easier for a reader to parse regardless of the case.

The behavior is controlled by the option F_api_case which may have the values lower, upper, underscore, or
preserve. This option is used to set the format field F_name_api which in turn is used in several options used
to define names consistently: F_C_name_template, F_name_impl_template, F_name_function_template,
F_name_generic_template, F_abstract_interface_subprogram_template, F_derived_name_template,
F_typedef_name_template.

A Fortran module will be created for the library. This allows the compiler to do it’s own mangling so it is unnecessary
to add an additional prefix to function names. In contrast, the C wrappers add a prefix to each wrapper since all names
are global.

14.2 Wrapper

As each function declaration is parsed a format dictionary is created with fields to describe the function and its argu-
ments. The fields are then expanded into the function wrapper.

The template for Fortran code showing names which may be controlled directly by the input YAML file:

module {F_module_name}

! use_stmts

(continues on next page)

85

shroud Documentation, Release 0.13.0

(continued from previous page)

implicit none

abstract interface
subprogram {F_abstract_interface_subprogram_template}

type :: {F_abstract_interface_argument_template}
end subprogram

end interface

interface
{F_C_pure_clause} {F_C_subprogram} {F_C_name}

{F_C_result_clause} bind(C, name="{C_name}")
! arg_f_use
implicit none
! arg_c_decl

end {F_C_subprogram} {F_C_name}
end interface

interface {F_name_generic}
module procedure {F_name_impl}

end interface {F_name_generic}

contains

{F_subprogram} {F_name_impl}
arg_f_use
arg_f_decl
! splicer begin
declare ! local variables
pre_call
call {arg_c_call}
post_call
! splicer end

end {F_subprogram} {F_name_impl}

end module {F_module_name}

14.3 Class

Use of format fields for creating class wrappers.

type, bind(C) :: {F_capsule_data_type}
type(C_PTR) :: addr = C_NULL_PTR ! address of C++ memory
integer(C_INT) :: idtor = 0 ! index of destructor

end type {F_capsule_data_type}

type {F_derived_name}
type({F_capsule_data_type}) :: {F_derived_member}

contains
procedure :: {F_name_function} => {F_name_impl}
generic :: {F_name_generic} => {F_name_function}, ...

! F_name_getter, F_name_setter, F_name_instance_get as underscore_name
procedure :: [F_name_function_template] => [F_name_impl_template]

(continues on next page)

86 Chapter 14. Fortran

shroud Documentation, Release 0.13.0

(continued from previous page)

end type {F_derived_name}

14.3.1 Standard type-bound procedures

Several type bound procedures can be created to make it easier to use class from Fortran.

Usually the F_derived_name is constructed from wrapped C++ constructor. It may also be useful to take a pointer to a
C++ struct and explicitly put it into a the derived type. The functions F_name_instance_get and F_name_instance_set
can be used to access the pointer directly.

Two predicate function are generated to compare derived types:

interface operator (.eq.)
module procedure class1_eq
module procedure singleton_eq

end interface

interface operator (.ne.)
module procedure class1_ne
module procedure singleton_ne

end interface

contains

function {F_name_scope}eq(a,b) result (rv)
use iso_c_binding, only: c_associated
type({F_derived_name}), intent(IN) ::a,b
logical :: rv
if (c_associated(a%{F_derived_member}%addr, b%{F_derived_member}%addr)) then

rv = .true.
else

rv = .false.
endif

end function {F_name_scope}eq

function {F_name_scope}ne(a,b) result (rv)
use iso_c_binding, only: c_associated
type({F_derived_name}), intent(IN) ::a,b
logical :: rv
if (.not. c_associated(a%{F_derived_member}%addr, b%{F_derived_member}%addr))

→˓then
rv = .true.

else
rv = .false.

endif
end function {F_name_scope}ne

14.4 Generic Interfaces

Shroud has the ability to create generic interfaces for the routines that are being wrapped. The generic intefaces
groups several functions under a common name. The compiler will then call the corresponding function based on the
argument types used to call the generic function.

14.4. Generic Interfaces 87

shroud Documentation, Release 0.13.0

In several cases generic interfaces are automatically created. Function overloading and default arguments both create
generic interfaces.

14.4.1 Assumed Rank

Assumed rank arguments allow a scalar or any rank array to be passed as an argument. This is added as the attribute
dimension(..). Think of the .. as a :, used to separate lower and upper bounds, which fell over. This feature is part
of Fortran’s Further interoperability with C. First as TS 29113, approved in 2012, then as part of the Fortran 2018
standard.

Note: Shroud does not support Further Interoperability with C directly, yet.

Assumed-rank arguments are support by Shroud for older versions of Fortran by creating a generic interface. If there
are multiple arguments with assumed-rank, Shroud will give each argument the same rank for each generic interface.
This handles the common case and avoids the combinatoral explosion of mixing ranks in a single function interface.

The ranks used are controlled by the options F_assumed_rank_min and F_assumed_rank_max which default to 0, for
scalar, and 7.

- decl: int SumValues(const int *values+dimension(..), int nvalues)
options:
F_assumed_rank_max: 2

The generated generic interface can be used to pass a scalar, 1d or 2d array to the C function. In each case result is
5.

result = sum_array(5, 1)
result = sum_array([1,1,1,1,1], 5)

14.4.2 Grouping Functions Together

The first case allows multiple C wrapper routines to be called by the same name. This is done by setting the
F_name_generic format field.

- decl: void UpdateAsFloat(float arg)
options:
F_force_wrapper: True

format:
F_name_generic: update_real

- decl: void UpdateAsDouble(double arg)
options:
F_force_wrapper: True

format:
F_name_generic: update_real

This allows the correct functions to be called based on the argument type.

Note: In this example F_force_wrapper is set to True since by default Shroud will not create explicit wrappers for
the functions since only native types are used as arguments. The generic interface is using module procedure`
which requires the Fortran wrapper. This should be changed in a future version of Shroud.

88 Chapter 14. Fortran

shroud Documentation, Release 0.13.0

call update_real(22.0_C_FLOAT)
call update_real(23.0_C_DOUBLE)

Or more typically as:

call update_real(22.0)
call update_real(23.0d0)

14.4.3 Argument Coercion

The C compiler will coerce arguments in a function call to the type of the argument in the prototype. This makes it
very easy to pass an float to a function which is expecting a double. Fortran, which defaults to pass by reference,
does not have this feature since it is passing the address of the argument. This corresponds to C’s behavior since it
cannot coerce a float * to a double *. When passing a literal 0.0 as a float argument it is necessary to use
0.0_C_DOUBLE.

Shroud can create a generic interface for function which will coerce arguments similar to C’s behavior. The for-
tran_generic section variations of arguments which will be used to create a generic interface. For example, when
wrapping a function which takes a double, the float variation can also be created.

- decl: void GenericReal(double arg)
fortran_generic:
- decl: (float arg)
function_suffix: _float

- decl: (double arg)
function_suffix: _double

This will create a generic interface generic_real with two module procedures generic_real_float and
generic_real_double.

interface generic_real
module procedure generic_real_float
module procedure generic_real_double

end interface generic_real

This can be used as

call generic_real(0.0)
call generic_real(0.0d0)

call generic_real_float(0.0)
call generic_real_double(0.0d0)

When adding decl entries to the fortran_generic list the original declaration must also be included, double arg in
this case. When there are multiple arguments only the arguments which vary need to be declared. The other arguments
will be the same as the original decl line.

The function_suffix line will be used to add a unique string to the generated Fortran wrappers. Without function_suffix
each function will have an integer suffix which is increment for each function.

14.4.4 Scalar and Array Arguments

Shroud can produce a generic interface which allows an argument to be passed as a scalar or an array. This can help
generalize some function calls where a scalar can be used instead of an array of length one. This was often used in
Fortran code before interfaces were introduced in Fortran 90. But now when using an interface the compiler will report

14.4. Generic Interfaces 89

shroud Documentation, Release 0.13.0

an error when passing a scalar where an array is expected. Likewise, a C function with a pointer argument such as int
* has no way of knowing how long the array is without being told explicitly. Thus in C it is easy to pass a pointer to a
scalar.

In the fortran_generic section one of the declarations can be given the rank attribute which causes the interface to
expect an array. Note that the declaration for the C function does not include the rank attribute.

- decl: int SumArray(int *values, int nvalues)
fortran_generic:
- decl: (int *values)
function_suffix: _scalar

- decl: (int *values+rank(1))
function_suffix: _array

The generated generic interface can be used to pass a scalar or array to the C function.

integer scalar, result
integer array(5)

scalar = 5
result = sum_array(scalar, 1)

array = [1,2,3,4,5]
result = sum_array(array, 5)

90 Chapter 14. Fortran

CHAPTER 15

Python

Note: Work in progress

This section discusses Python specific wrapper details.

15.1 Wrapper

15.2 Types

15.3 type fields

15.3.1 PY_build_arg

Argument for Py_BuildValue. Defaults to {cxx_var}. This field can be used to turn the argument into an expression
such as (int) {cxx_var} or {cxx_var}{cxx_member}c_str() PY_build_format is used as the format:

Py_BuildValue("{PY_build_format}", {PY_build_arg});

15.3.2 PY_build_format

‘format unit’ for Py_BuildValue. If None, use value of PY_format. Defaults to None

15.3.3 PY_format

‘format unit’ for PyArg_Parse and Py_BuildValue. Defaults to O

91

shroud Documentation, Release 0.13.0

15.3.4 PY_PyTypeObject

Variable name of PyTypeObject instance. Defaults to None.

15.3.5 PY_PyObject

Typedef name of PyObject instance. Defaults to None.

15.3.6 PY_ctor

Expression to create object. ex. PyInt_FromLong({rv}) Defaults to None.

15.3.7 PY_get

Expression to get value from an object. ex. PyInt_AsLong({py_var}) Defaults to None.

15.3.8 PY_to_object_idtor

Create an Python object for the type. Includes the index of the destructor function. Used with structs/classes that are
created by functions and must be wrapped. object = converter(address, idtor). Defaults to None.

15.3.9 PY_to_object

PyBuild - object = converter(address). Defaults to None.

15.3.10 PY_from_object

PyArg_Parse - status = converter(object, address). Defaults to None.

15.3.11 py_ctype

The type returned by PY_get function. Defaults to None which implies it is the same as the typemap. i.e.
PyInt_AsLong returns a long.

Defined for complex types because PyComplex_AsCComplex returns type Py_complex. See also py-
type_to_pyctor and pytype_to_cxx.

15.3.12 pytype_to_pyctor

Expression to use with PY_ctor. Defaults to None which indicates no additional processing of the argument is re-
quired. Only needs to be defined when py_ctype is defined.

With complex types, it is used to extract the real and imaginary parts from Py_complex (defined with py_ctype)
with creal({ctor_expr}), cimag({ctor_expr}). ctor_expr is the expression used with Py_ctor.

92 Chapter 15. Python

shroud Documentation, Release 0.13.0

15.3.13 pytype_to_cxx

Expression to convert py_ctype into a C++ value. Only needs to be defined when py_ctype is defined.

Used with complex to convert Py_complex (defined with py_ctype) to C using {work_var}.real +
{work_var}.imag * I or C++ with std::complex(\tcvalue.real, cvalue.imag).

15.3.14 cxx_to_pytype

Statements to convert cxx_var to py_ctype/ Only needs to be defined when py_ctype is defined.

cxx_to_pytype: |
{ctype_var}.real = creal({cxx_var});
{ctype_var}.imag = cimag({cxx_var});

15.3.15 PYN_descr

Name of PyArray_Descr variable which describe type. Used with structs. Defaults to None.

15.3.16 PYN_typenum

NumPy type number. ex. NPY_INT Defaults to None.

15.4 Statements

The template for a function is:

static char {PY_name_impl}__doc__[] = "{PY_doc_string}";

static PyObject *'
{PY_name_impl}(

{PY_PyObject} *{PY_param_self},
PyObject *{PY_param_args},
PyObject *{PY_param_kwds})

{
{declare}

// {parse_format} {parse_args}
if (!PyArg_ParseTupleAndKeywords(

{PY_param_args}, {PY_param_kwds}, "{PyArg_format}",
SH_kw_list, {PyArg_vargs})) {
return NULL;

}

// result pre_call

// Create C from Python objects
// Create C++ from C
{post_parse}
{ create scope before fail

{pre_call} pre_call declares variables for arguments

(continues on next page)

15.4. Statements 93

shroud Documentation, Release 0.13.0

(continued from previous page)

call {arg_call}
{post_call}

per argument
// Create Python object from C++
{ctor} {post_call}

{PyObject} * {py_var} Py_BuildValue("{Py_format}", {vargs});
{cleanup}

}
return;

fail:
{fail}
Py_XDECREF(arr_x);

}

The template for a setter is:

static PyObject *{PY_getter}(
{PY_PyObject} *{PY_param_self},
void *SHROUD_UNUSED(closure)) {
{setter}

}

The template for a getter is:

static int {PY_setter}("
{PY_PyObject} *{PY_param_self},
PyObject *{py_var},
void *SHROUD_UNUSED(closure)) {
{getter}
return 0;

}

Fields listed in the order they generate code. C variables are created before the call to Py_ParseArgs. C++ variables
are then created in post_parse and pre_call. For example, creating a std::string from a char *.

15.4.1 allocate_local_var

Functions which return a struct/class instance (such as std::vector) need to allocate a local variable which will be used
to store the result. The Python object will maintain a pointer to the instance until it is deleted.

15.4.2 c_header

15.4.3 cxx_header

15.4.4 c_helper

Blank delimited list of helper functions required for the wrapper. The name may contain format strings and will be
expand before it is used. ex. to_PyList_{cxx_type}. The function associated with the helper will be named
hnamefunc0, hnamefunc1, . . . for each helper listed.

94 Chapter 15. Python

shroud Documentation, Release 0.13.0

15.4.5 need_numpy

If True, add NumPy headers and initialize in the module.

15.4.6 fmtdict

Update format dictionary to override generated values. Each field will be evaluated before assigment.

ctor_expr - Expression passed to Typemap.PY_ctor PyInt_FromLong({ctor_expr}). Useful to add derefer-
encing if necessary. PyInt_FromLong is from typemap.PY_ctor.

fmtdict=dict(
ctor_expr="{c_var}",

),

15.4.7 arg_declare

By default a local variable will be declared the same type as the argument to the function.

For some cases, this will not be correct. This field will be used to replace the default declaration.

references

In some cases the declaration is correct but need to be initialized. For example, setting a pointer.

Assign a blank list will not add any declarations. This is used when only an output std::string or std::vector
is created after parsing arguments.

This variables is used with PyArg_ParseTupleAndKeywords.

The argument will be non-const to allow it to be assigned later.

name="py_char_*_out_charlen",
arg_declare=[

"{c_const}char {c_var}[{charlen}]; // intent(out)",
],

15.4.8 declare

Code needed to declare local variable. Often used to define variables of type PyObject *.

15.4.9 cxx_local_var

Set when a C++ variable is created by post_parse. scalar

Used to set format fields cxx_member

15.4.10 parse_format

Works together with parse_args to describe how to parse PyObject in PyArg_ParseTupleAndKeywords.
parse_format is used in the format arguments and parse_args is append to the call as a vararg.

int PyArg_ParseTupleAndKeywords(PyObject *args, PyObject *kw,
const char *format, char *keywords[], ...)

15.4. Statements 95

shroud Documentation, Release 0.13.0

The simplest use is to pass the object directly through so that it can be operated on by post_parse or pre_call to convert
the object into a C/C++ variable. For example, convert a PyObject into an int *.

parse_format="O",
parse_args=["&{pytmp_var}"],
declare=[

"PyObject * {pytmp_var};",
],

The format field pytmp_var is created by Shroud, but must be declared if it is used.

It can also be used to provide a converter function which converts the object:

parse_format="O&",
parse_args=["{hnamefunc0}", "&{py_var}"],

From the Python manual: Note that any Python object references which are provided to the caller (of PyArg_Parse)
are borrowed references; do not decrement their reference count!

15.4.11 parse_args

A list of wrapper variables that are passed to PyArg_ParseTupleAndKeywords. Used with parse_format.

15.4.12 cxx_local_var

Set to scalar or pointer depending on the declaration in post_declare post_parse or pre_call.

15.4.13 post_declare

Declaration of C++ variables after calling PyArg_ParseTupleAndKeywords. Usually involves object construc-
tors such as std::string or std::vector. Or for extracting struct and class pointers out of a PyObject.

These declarations should not include goto fail. This allows them to be created without a “jump to label ‘fail’
crosses initialization of” error.

“It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. A program that
jumps from a point where a local variable with automatic storage duration is not in scope to a point where it is in scope
is ill-formed unless the variable has POD type (3.9) and is declared without an initializer.”

15.4.14 post_parse

Statements to execute after the call to PyArg_ParseTupleAndKeywords. Used to convert C values into C++
values:

{var} = PyObject_IsTrue({var_obj});

Will not be added for class constructor objects. since there is no need to build return values.

Allow intent(in) arguments to be processed. For example, process PyObject into PyArrayObject.

96 Chapter 15. Python

shroud Documentation, Release 0.13.0

15.4.15 pre_call

Location to allocate memory for output variables. All intent(in) variables have been processed by post_parse so their
lengths are known.

15.4.16 arg_call

List of arguments to pass to function.

15.4.17 post_call

Convert result and intent(out) into PyObject. Set object_created to True if a PyObject is created.

15.4.18 cleanup

Code to remove any intermediate variables.

15.4.19 fail

Code to remove allocated memory and created objects.

15.4.20 goto_fail

If True, one of the other blocks such as post_parse, pre_call, and post_call contain a call to fail. If any statements
block sets goto_fail, then the fail block will be inserted into the code/

15.4.21 object_created

Set to True when a PyObject is created by post_call. This prevents Py_BuildValue from converting it into an
Object. For example, when a pointer is converted into a PyCapsule or when NumPy is used to create an object.

15.5 Predefined Types

15.5.1 Int

An int argument is converted to Python with the typemap:

type: int
fields:

PY_format: i
PY_ctor: PyInt_FromLong({c_deref}{c_var})
PY_get: PyInt_AsLong({py_var})
PYN_typenum: NPY_INT

15.5. Predefined Types 97

shroud Documentation, Release 0.13.0

15.6 Pointers

When a function returns a pointer to a POD type several Python interfaces are possible. When a function returns an
int * the simplest result is to return a PyCapsule. This is just the raw pointer returned by C++. It’s also the least
useful to the caller since it cannot be used directly. The more useful option is to assume that the result is a pointer to a
scalar. In this case a NumPy scalar can be returned or a Python object such as int or float.

If the C++ library function can also provide the length of the pointer, then its possible to return a NumPy array. If
owner(library) is set, the memory will never be released. If owner(caller) is set, the the memory will be released when
the object is deleted.

The argument int *result+intent(OUT)+dimension(3) will create a NumPy array, then pass the pointer
to the data to the C function which will presumably fill the contents. The NumPy array will be returned as part of the
function result. The dimension attribute must specify a length.

15.7 Class Types

An extension type is created for each C++ class:

typedef struct {
PyObject_HEAD

{namespace_scope}{cxx_class} * {PY_obj};
} {PY_PyObject};

15.7.1 Extension types

Additional type information can be provided in the YAML file to generate place holders for extension type methods:

- name: ExClass2
cxx_header: ExClass2.hpp
python:
type: [dealloc, print, compare, getattr, setattr,

getattro, setattro,
repr, hash, call, str,
init, alloc, new, free, del]

98 Chapter 15. Python

CHAPTER 16

Cookbook

16.1 Function is really a macro or function pointer

When wrapping a C library, a function which is really a macro may not create a C wrapper. It is necessary to use the
option C_force_wrapper: true to create a wrapper which will expand the macro and create a function which
the Fortran wrapper may call. This same issue occurs when the function is really a function pointer.

When wrapping C++, a C wrapper is always created to create a extern C symbol that Fortran can call. So this problem
does not occur.

16.2 F_name_impl with fortran_generic

Using the F_name_impl format string to explicitly name a Fortran wrapper combined with the fortran_generic field
may present some surprising behavior. The routine BA_change takes a long argument. However, this is inconve-
nient in Fortran since the default integer is typically an int. When passing a constant you need to explicitly state the
kind as 0_C_LONG. Shroud lets you create a generic routine which will also accept 0. But if you explicitly name the
function using F_name_impl, both Fortran generated functions will have the same name. The solution is to set format
field F_name_generic and the option for F_name_impl_template.

- decl: int BA_change(const char *name, long n)
format:
F_name_generic: change

options:
F_name_impl_template: "{F_name_generic}{function_suffix}"

fortran_generic:
- decl: (int n)
function_suffix: int

- decl: (long n)
function_suffix: long

Will generate the Fortran code

99

shroud Documentation, Release 0.13.0

interface change
module procedure change_int
module procedure change_long

end interface change

100 Chapter 16. Cookbook

CHAPTER 17

Typemaps

A typemap is created for each type to describe to Shroud how it should convert a type between languages for each
wrapper. Native types are predefined and a Shroud typemap is created for each struct and class declaration.

The general form is:

declarations:
- type: type-name

fields:
field1:
field2:

type-name is the name used by C++. There are some fields which are used by all wrappers and other fields which are
used by language specific wrappers.

17.1 type fields

These fields are common to all wrapper languages.

17.1.1 base

The base type of type-name. This is used to generalize operations for several types. The base types that Shroud uses
are bool, integer, real, complex, string, vector, struct or shadow.

integer includes all integer types such as short, int and long.

17.1.2 cpp_if

A c preprocessor test which is used to conditionally use other fields of the type such as c_header and cxx_header:

101

shroud Documentation, Release 0.13.0

- type: MPI_Comm
fields:
cpp_if: ifdef USE_MPI

17.1.3 flat_name

A flattened version of cxx_type which allows the name to be used as a legal identifier in C, Fortran and Python. By de-
fault any scope separators are converted to underscores i.e. internal::Worker becomes internal_Worker.
Imbedded blanks are converted to underscores i.e. unsigned int becomes unsigned_int. And template
arguments are converted to underscores with the trailing > being replaced i.e. std::vector<int> becomes
std_vector_int.

Complex types set this explicitly since C and C++ have much different type names. The flat_name is always
double_complex while c_type is double complex and cxx_type is complex<double>.

One use of this name is as the function_suffix for templated functions.

17.1.4 idtor

Index of capsule_data destructor in the function C_memory_dtor_function. This value is computed by Shroud
and should not be set. It can be used when formatting statements as {idtor}. Defaults to 0 indicating no destructor.

17.1.5 sgroup

Groups different base types together. For example, base integer and real are both sgroup native. For many others,
they’re the same: base=struct, sgroup=struct.

17.2 C and C++

17.2.1 c_type

Name of type in C. Default to None.

17.2.2 c_header

Name of C header file required for type. This file is included in the interface header. Only used with language=c.
Defaults to None.

See also cxx_header.

For example, size_t requires stddef.h:

type: size_t
fields:

c_type: size_t
cxx_type: size_t
c_header: <stddef.h>

102 Chapter 17. Typemaps

shroud Documentation, Release 0.13.0

17.2.3 c_to_cxx

Expression to convert from C to C++. Defaults to None which implies {c_var}. i.e. no conversion required.

17.2.4 c_templates

c_statements for cxx_T

A dictionary indexed by type of specialized c_statements When an argument has a template field, such as type
vector<string>, some additional specialization of c_statements may be required:

c_templates:
string:

intent_in_buf:
- code to copy CHARACTER to vector<string>

17.2.5 c_return_code

None

17.2.6 c_union

None # Union of C++ and C type (used with structs and complex)

17.2.7 cxx_type

Name of type in C++. Defaults to None.

17.2.8 cxx_to_c

Expression to convert from C++ to C. Defaults to None which implies {cxx_var}. i.e. no conversion required.

17.2.9 cxx_header

Name of C++ header file required for implementation.

c_type: size_t
c_header: '<stddef.h>'
cxx_header: '<cstddef>'

See also c_header.

17.2.10 impl_header

impl_header is used for implementation, i.e. the wrap.cpp file. For example, std::string uses <string>.
<string> should not be in the interface since the wrapper is a C API.

17.2. C and C++ 103

shroud Documentation, Release 0.13.0

17.2.11 wrap_header

wrap_header is used for generated wrappers for shadow classes. Contains struct definitions for capsules from Fortran.

A C int is represented as:

type: int
fields:

c_type: int
cxx_type: int

17.3 Fortran

17.3.1 i_module

Fortran modules needed for type in the interface. A dictionary keyed on the module name with the value being a list
of symbols. Similar to f_module. Defaults to None.

In this example, the symbol indextype is created by a typedef which creates a symbol in Fortran. This symbol,
indextype, must be imported into the interface.

typedef int indextype;

indextype:
--import--:
- indextype

17.3.2 i_type

Type declaration for bind(C) interface. Defaults to None which will then use f_type.

17.3.3 f_cast

Expression to convert Fortran type to C type. This is used when creating a Fortran generic functions which ac-
cept several type but call a single C function which expects a specific type. For example, type int is defined as
int({f_var}, C_INT). This expression converts f_var to a integer(C_INT). Defaults to {f_var} i.e. no
conversion.

17.3.4 f_derived_type

Fortran derived type name. Defaults to None which will use the C++ class name for the Fortran derived type name.

17.3.5 f_kind

Fortran kind of type. For example, C_INT or C_LONG. Defaults to None.

104 Chapter 17. Typemaps

shroud Documentation, Release 0.13.0

17.3.6 f_module

Fortran modules needed for type in the implementation wrapper. A dictionary keyed on the module name with the
value being a list of symbols. Defaults to None.:

f_module:
iso_c_binding:
- C_INT

17.3.7 f_type

Name of type in Fortran. (integer(C_INT)) Defaults to None.

17.3.8 f_to_c

None Expression to convert from Fortran to C.

example

An int argument is converted to Fortran with the typemap:

typemap:
- type: int

fields:
f_type: integer(C_INT)
f_kind: C_INT
f_module:

iso_c_binding:
- C_INT

f_cast: int({f_var}, C_INT)

A struct defined in another YAML file.

typemap:
- type: Cstruct1

fields:
base: struct
cxx_header:
- struct.hpp
wrap_header:
- wrapstruct.h
c_type: STR_cstruct1
f_derived_type: cstruct1
f_module_name: struct_mod

17.4 Statements

Each language also provides a section that is used to insert language specific statements into the wrapper. These are
named c_statements, f_statements, and py_statements.

The are broken down into several resolutions. The first is the intent of the argument. result is used as the intent for
function results.

17.4. Statements 105

shroud Documentation, Release 0.13.0

in Code to add for argument with intent(IN). Can be used to convert types or copy-in semantics. For example,
char * to std::string.

out Code to add after call when intent(OUT). Used to implement copy-out semantics.

inout Code to add after call when intent(INOUT). Used to implement copy-out semantics.

result Result of function. Including when it is passed as an argument, F_string_result_as_arg.

Each intent is then broken down into code to be added into specific sections of the wrapper. For example, declaration,
pre_call and post_call.

Each statement is formatted using the format dictionary for the argument. This will define several variables.

c_var The C name of the argument.

cxx_var Name of the C++ variable.

f_var Fortran variable name for argument.

For example:

f_statements:
intent_in:
- '{c_var} = {f_var} ! coerce to C_BOOL'
intent_out:
- '{f_var} = {c_var} ! coerce to logical'

Note that the code lines are quoted since they begin with a curly brace. Otherwise YAML would interpret them as a
dictionary.

See the language specific sections for details.

106 Chapter 17. Typemaps

CHAPTER 18

Statements

Shroud can be thought of as a fancy macro processor. The statement data structure is used to define code that should
be used to create the wrapper. Combinations of language, type and attributes are used to select a statement entry.

18.1 Passing function result as an argument

This section explains how statements are used to generate code for functions which return a struct.

Compiler ABI do not agree on how some function results should be returned. To ensure portablity, some function
results must be passed as an additional argument. This is typically more complicated types such as struct or complex.

dict(
name="f_function_struct_scalar",
alias=[

"c_function_struct_scalar",
],
f_arg_call=["{f_var}"],

c_arg_decl=["{c_type} *{c_var}"],
i_arg_decl=["{f_type}, intent(OUT) :: {c_var}"],
i_arg_names=["{c_var}"],
i_import=["{f_kind}"],
c_return_type="void", # Convert to function.
cxx_local_var="result",
c_post_call=[

"memcpy((void *) {c_var}, (void *) &{cxx_var}, sizeof({cxx_var}));",
],

),

107

shroud Documentation, Release 0.13.0

108 Chapter 18. Statements

CHAPTER 19

C Statements

Note: Work in progress

extern "C" {

{C_return_type} {C_name}({C_prototype})
{

{c_pre_call}
{c_call_code} {call} arg_call
{post_call_pattern}
{c_post_call}
{c_final}
{c_return}

}

C_prototype -> c_arg_decl

A corresponding bind(C) interface can be created for Fortran.

{F_C_subprogram} {F_C_name}({F_C_arguments}) &
{F_C_result_clause} &
bind(C, name="{C_name}")
f_c_module / f_c_module_line
f_c_import
f_c_arg_decl
f_c_result_decl

end {F_C_subprogram} {F_C_name}

Where F_C_clause = F_C_arguments = f_c_arg_names F_C_result_clause = f_c_result_var

109

shroud Documentation, Release 0.13.0

19.1 Lookup statements

The statements for an argument are looked up by converting the type and attributes into an underscore delimited string.

• language - c

• intent - in, out, inout, function, ctor, dtor, getter, setter

• group from typemap. native

• pointer - scalar, *, **

• api - from attribute buf, capsule, capptr, cdesc and cfi.

• deref - from attribute allocatable, pointer, raw, result-as-arg, scalar

19.1.1 template

Each template argument is appended to the initial statement name. targ, group and pointer

19.2 c_statements

19.2.1 name

A name can contain variants separated by /.

- name: c_in/out/inout_native_*_cfi

This is equivelent to having three groups:

- name: c_in_native_*_cfi
- name: c_out_native_*_cfi
- name: c_inout_native_*_cfi

19.2.2 iface_header

List of header files which will be included in the generated header for the C wrapper. These headers must be C only
and will be included after ifdef __cplusplus. Used for headers needed for declarations in c_arg_decl. Can
contain headers required for the generated prototypes.

For example, ISO_Fortran_binding.h is C only.

19.2.3 impl_header

A list of header files which will be added to the C wrapper implementation. These headers may include C++ code.

19.2.4 c_helper

A blank delimited list of helper functions which will be added to the wrapper file. The list will be formatted to allow
for additional flexibility:

110 Chapter 19. C Statements

shroud Documentation, Release 0.13.0

c_helper: capsule_data_helper vector_context vector_copy_{cxx_T}

These functions are defined in whelper.py. There is no current way to add additional functions.

19.2.5 cxx_local_var

If a local C++ variable is created for an argument by pre_call, cxx_local_var indicates if the local variable is a pointer,
scalar or result. .. This sets cxx_var is set to SH_{c_var}. This will properly dereference the variable when passed
to the C++ function. It will also set the format fields cxx_member. For example, a std::string argument is created
for the C++ function from the char * argument passed into the C API wrapper.

name="c_inout_string",
cxx_local_var="scalar",
pre_call=["{c_const}std::string {cxx_var}({c_var});"],

Set to **return** when the *c_var* is passed in as an argument and
a C++ variable must be created.
Ex ``c_function_shadow``.
In this case, *cxx_to_c* is defined so a local variable will already
be created, unless *language=c* in which case *cxx_to_c* is unneeded.

19.2.6 c_arg_decl

A list of declarations to append to the prototype in the C wrapper. Defaults to None which will cause Shroud to
generate an argument from the wrapped function’s argument. An empty list will cause no declaration to be added.
Functions do not add arguments by default. A trailing semicolon will be provided.

Note: c_arg_decl, i_arg_decl, and i_arg_names must all exist in a group and have the same number of names.

19.2.7 i_arg_decl

A list of dummy argument declarations in the Fortran bind(C) interface. The variable to be declared is c_var.
i_module can be used to add USE statements needed by the declarations. An empty list will cause no declaration to be
added.

Note: c_arg_decl, i_arg_decl, and i_arg_names must all exist in a group and have the same number of names.

19.2.8 i_arg_names

Names of arguments to pass to C function. Defaults to {F_C_var}. An empty list will cause no declaration to be
added.

Note: c_arg_decl, i_arg_decl, and i_arg_names must all exist in a group and have the same number of names.

19.2. c_statements 111

shroud Documentation, Release 0.13.0

19.2.9 i_result_decl

A list of declarations in the Fortran interface for a function result value.

19.2.10 i_import

List of names to import into the Fortran interface. The names will be expanded before being used.

In this example, Shroud creates F_array_type derived type in the module and it is used in the interface.

i_import=["{F_array_type}"],

19.2.11 i_module

Fortran modules used in the Fortran interface:

i_module=dict(iso_c_binding=["C_PTR"]),

19.2.12 i_module_line

Fortran modules used in the Fortran interface as a single line which allows format strings to be used.

i_module_line="iso_c_binding:{f_kind}",

The format is:

module ":" symbol ["," symbol]* [";" module ":" symbol ["," symbol]*]

19.2.13 c_arg_call

19.2.14 c_pre_call

Code used with intent(in) arguments to convert from C to C++.

19.2.15 c_call

Code to call function. This is usually generated. An exception which require explicit call code are constructors and
destructors for shadow types.

19.2.16 c_post_call

Code used with intent(out) arguments and function results. Can be used to convert results from C++ to C.

19.2.17 c_final

Inserted after post_call and before ret. Can be used to release intermediate memory in the C wrapper.

112 Chapter 19. C Statements

shroud Documentation, Release 0.13.0

19.2.18 c_return

List of code for return statement. Usually generated but can be replaced. For example, with constructors.

Useful to convert a subroutine into a function. For example, convert a void function which fills a std::vector to
return the number of items.

19.2.19 c_return_type

Explicit return type when it is different than the functions return type. For example, with shadow types.

c_return_type: long
c_return:
- return Darg->size;

return_type can also be used to convert a C wrapper into a void function. This is useful for functions which return point-
ers but the pointer value is assigned to a subroutine argument which holds the pointer (For example, CFI_cdesc_t).
The type(C_PTR) which would be return by the C wrapper is unneeded by the Fortran wrapper.

19.2.20 destructor_name

A name for the destructor code in destructor. Must be unique. May include format strings:

destructor_name: std_vector_{cxx_T}

19.2.21 destructor

A list of lines of code used to delete memory. Usually allocated by a pre_call statement. The code is inserted into
C_memory_dtor_function which will provide the address of the memory to destroy in the variable void *ptr. For
example:

destructor:
- std::vector<{cxx_T}> *cxx_ptr = reinterpret_cast<std::vector<{cxx_T}> *>(ptr);
- delete cxx_ptr;

19.2.22 owner

Set owner of the memory. Similar to attribute owner.

Used where the new` operator is part of the generated code. For example where a class is returned by value or a
constructor. The C wrapper must explicitly allocate a class instance which will hold the value from the C++ library
function. The Fortran shadow class must keep this copy until the shadow class is deleted.

Defaults to library.

19.2.23 c_temps

A list of suffixes for temporary variable names.

19.2. c_statements 113

shroud Documentation, Release 0.13.0

c_temps=["len"]

Create variable names in the format dictionary using
``{fmt.c_temp}{rootname}_{name}``.
For example, argument *foo* creates *SHT_foo_len*.

19.2.24 c_local

Similar to temps but uses {fmt.C_local}{rootname}_{name}. temps is intended for arguments
and is typically used in a mixin group. local is used by group to generate names for local variables. This
allows creating names without conflicting with temps from a mixin group.

19.2.25 lang_c and lang_cxx

Language specific versions of each field can be added to these dictionaries. The version which corresponds to the
YAML file language field will be used.

lang_c=dict(
impl_header=["<stddef.h>"],

),
lang_cxx=dict(

impl_header=["<cstddef>"],
),

114 Chapter 19. C Statements

CHAPTER 20

Fortran Statements

Note: Work in progress.

Typemaps are used to add code to the generated wrappers to replace the default code.

The statements work together to pass variables and metadata between Fortran and C.

20.1 fc_statements

A Fortran wrapper is created out of several segments.

{F_subprogram} {F_name_impl}({F_arguments}){F_result_clause}
f_module
f_import
f_arg_decl
! splicer begin
f_declare
f_pre_call
f_call {}({f_arg_call})
f_post_call
! splicer end

end {F_subprogram} {F_name_impl}

The bind(C) interface is defined by the cstatements since it must match the C wrapper that is being called. The C
wrapper may have a different API than the Fortran wrapper since the Fortran may pass down additional arguments.

20.1.1 f_helper

Blank delimited list of Fortran helper function names to add to generated Fortran code. These functions are defined in
whelper.py. There is no current way to add user defined helper functions.

115

shroud Documentation, Release 0.13.0

20.1.2 f_module

USE statements to add to Fortran wrapper. A dictionary of list of ONLY names:

f_module:
iso_c_binding:
- C_SIZE_T

20.1.3 f_need_wrapper

Shroud tries to only create an interface for a C function to avoid the extra layer of a Fortran wrapper. However, often
the Fortran wrapper needs to do some work that the C wrapper cannot. This field can be set to True to ensure the
Fortran wrapper is created. This is used when an assignment is needed to do a type coercion; for example, with logical
types.

A wrapper will always be created if the F_force_wrapper option is set.

20.1.4 f_arg_name

List of name of arguments for Fortran subprogram. Will be formatted before being used to expand {f_var}.

Any function result arguments will be added at the end. Only added if f_arg_decl is also defined.

20.1.5 f_arg_decl

List of argument or result declarations. Usually constructed from YAML decl but sometimes needs to be explicit to
add Fortran attributes such as TARGET or POINTER. Also used when a function result is converted into an argument.
Added before splicer since it is part of the API and must not change. Additional declarations can be added within the
splicer via f_declare.

f_arg_name=["{f_var}"],
f_arg_decl=[

"character, value, intent(IN) :: {f_var}",
],

20.1.6 f_arg_call

List of arguments to pass to C wrapper. By default the arguments of the Fortran wrapper are passed to the C wrapper.
The list of arguments can be set to pass additional arguments or expressions. The format field f_var the name of the
argument.

When used with a f_function statement, the argument will be added to the end of the call list.

f_arg_call=[
"C_LOC({f_var})"

],

f_arg_call=[
"{f_var}",
"len({f_var}, kind=C_INT)",

],

116 Chapter 20. Fortran Statements

shroud Documentation, Release 0.13.0

20.1.7 f_declare

A list of declarations needed by f_pre_call or f_post_call. Usually a c_local_var is sufficient. No executable statements
should be used since all declarations must be grouped together. Implies f_need_wrapper. Added within the splicer to
make it easier to replace in the YAML file.

20.1.8 f_import

List of names to import into the Fortran wrapper. The names will be expanded before being used.

In this example, Shroud creates F_array_type derived type in the module and it is used in the interface.

f_import=["{F_array_type}"],

20.1.9 f_module

Fortran modules used in the Fortran wrapper:

f_module=dict(iso_c_binding=["C_PTR"]),

20.1.10 f_module_line

Fortran modules used in the Fortran wrapper as a single line which allows format strings to be used.

f_module_line="iso_c_binding:{f_kind}",

The format is:

module ":" symbol ["," symbol]* [";" module ":" symbol ["," symbol]*]

20.1.11 f_pre_call

Statement to execute before call, often to coerce types when f_cast cannot be used. Implies f_need_wrapper.

20.1.12 f_call

Code used to call the function. Defaults to {F_result} = {F_C_call}({f_arg_call})

For example, to assign to an intermediate variable:

f_declare=[
"type(C_PTR) :: {c_local_ptr}",

],
f_call=[

"{c_local_ptr} = {F_C_call}({f_arg_call})",
],
f_local=["ptr"],

20.1. fc_statements 117

shroud Documentation, Release 0.13.0

20.1.13 f_post_call

Statement to execute after call. Can be use to cleanup after f_pre_call or to coerce the return value. Implies
f_need_wrapper.

20.1.14 f_result

Name of result variable. Added as the RESULT clause of the subprogram statement. Can be used to change a
subroutine into a function.

In this example, the subroutine is converted into a function which will return the number of items copied into the result
argument.

- decl: void vector_iota_out_with_num2(std::vector<int> &arg+intent(out))
fstatements:
f:
f_result: num
f_module:

iso_c_binding: ["C_LONG"]
f_declare:
- "integer(C_LONG) :: num"
f_post_call:
- "num = Darg%size"

When set to subroutine it will treat the subprogram as a subroutine.

20.1.15 f_temps

A list of suffixes for temporary variable names.

f_temps=["len"]

Create variable names in the format dictionary using
``{fmt.c_temp}{rootname}_{name}``.
For example, argument *foo* creates *SHT_foo_len*.

20.1.16 f_local

Similar to f_temps but uses {fmt.C_local}{rootname}_{name}. temps is intended for arguments
and is typically used in a mixin group. f_local is used by group to generate names for local variables. This
allows creating names without conflicting with f_temps from a mixin group.

20.2 notimplemented

If True the statement is not implemented. The generated function will have #if 0 surrounding the wrapper.

This is a way to avoid generating code which will not compile when the notimplemented wrapper is not needed. For
example, the C wrapper for a C++ function when only the C bufferify wrapper is needed for Fortran. The statements
should eventually be completed to wrap the function properly.

118 Chapter 20. Fortran Statements

shroud Documentation, Release 0.13.0

20.3 How typemaps are found

20.3.1 alias

List of other names which will be used for its contents.

name="fc_out_string_**_cdesc_allocatable",
alias=[

"f_out_string_**_cdesc_allocatable",
"c_out_string_**_cdesc_allocatable",

],

20.3. How typemaps are found 119

shroud Documentation, Release 0.13.0

120 Chapter 20. Fortran Statements

CHAPTER 21

Reference

21.1 Command Line Options

help Show this help message and exit.

version Show program’s version number and exit.

outdir OUTDIR Directory for output files. Defaults to current directory.

outdir-c-fortran OUTDIR_C_FORTRAN Directory for C/Fortran wrapper output files, overrides –outdir.

outdir-python OUTDIR_PYTHON Directory for Python wrapper output files, overrides –outdir.

outdir-lua OUTDIR_LUA Directory for Lua wrapper output files, overrides –outdir.

outdir-yaml OUTDIR_YAML Directory for YAML output files, overrides –outdir.

logdir LOGDIR Directory for log files. Defaults to current directory.

cfiles CFILES Output file with list of C and C++ files created.

ffiles FFILES Output file with list of Fortran created.

path PATH Colon delimited paths to search for splicer files, may be supplied multiple times to append to path.

sitedir Return the installation directory of shroud and exit. This path can be used to find cmake/SetupShroud.cmake.

write-helpers BASE Write files which contain the available helper functions into the files BASE.c and BASE.f.

write-statements BASE Write a file which contain the statements tree. Used for debugging.

write-version Write Shroud version into generated files. --nowrite-version will not write the version and is
used by the testsuite to avoid changing every reference file when the version changes.

yaml-types FILE Write a YAML file with the default types.

121

shroud Documentation, Release 0.13.0

21.2 Global Fields

copyright A list of lines to add to the top of each generate file. Do not include any language specific comment
characters since Shroud will add the appropriate comment delimiters for each language.

classes A list of classes. Each class may have fields as detailed in Class Fields.

cxx_header Blank delimited list of header files which will be included in the implementation file. The order will be
preserved when generating wrapper files.

format Dictionary of Format fields for the library. Described in Format Fields.

language The language of the library to wrap. Valid values are c and c++. The default is c++.

library The name of the library. Used to name output files and modules. The first three letters are used as the default
for C_prefix option. Defaults to library. Each YAML file is intended to wrap a single library.

options Dictionary of option fields for the library. Described in Options

patterns Code blocks to insert into generated code. Described in Patterns.

splicer A dictionary mapping file suffix to a list of splicer files to read:

splicer:
c:
- filename1.c
- filename2.c

types A dictionary of user define types. Each type is a dictionary of members describing how to map a type between
languages. Described in Typemaps and Types Map.

21.3 Class Fields

cxx_header C++ header file name which will be included in the implementation file. If unset then the global
cxx_header will be used.

format Format fields for the class. Creates scope within library. Described in Format Fields.

declarations A list of declarations in the class. Each function is defined by Function Fields

fields: A dictionary of fields used to update the typemap.

options Options fields for the class. Creates scope within library. Described in Options

21.4 Function Fields

Each function can define fields to define the function and how it should be wrapped. These fields apply only to a single
function i.e. they are not inherited.

C_prototype XXX override prototype of generated C function

cxx_template A list that define how each templated argument should be instantiated:

decl: void Function7(ArgType arg)
cxx_template:
- instantiation: <int>
- instantiation: <double>

122 Chapter 21. Reference

shroud Documentation, Release 0.13.0

decl Function declaration. Parsed to extract function name, type and arguments descriptions.

default_arg_suffix A list of suffixes to apply to C and Fortran functions generated when wrapping a C++ function
with default arguments. The first entry is for the function with the fewest arguments and the final entry should
be for all of the arguments.

format Format fields for the function. Creates scope within container (library or class). Described in Format Fields.

fortran_generic A dictionary of lists that define generic functions which will be created. This allows different types
to be passed to the function. This feature is provided by C which will promote arguments. Each generic function
will have a suffix which defaults to an underscore plus a sequence number. This change be changed by adding
function_suffix for a declaration.

decl: void GenericReal(double arg)
fortran_generic:
- decl: (float arg)
function_suffix: suffix1

- decl: (double arg)

A full example is at :ref:`GenericReal <example_GenericReal>`.

options Options fields for the function. Creates scope within container (library or class). Described in Options

return_this If true, the method returns a reference to this. This idiom can be used to chain calls in C++. This idiom
does not translate to C and Fortran. Instead the C_return_type format is set to void.

21.5 Options

C_API_case Controls mangling of C++ library names to C names via the format field C_name_api. Possible values
are lower, upper, underscore, or preserve. Defaults to preserve and will be combined with C_prefix. For
example, C_name_template includes {C_prefix}{C_name_scope}{C_name_api}.

C_extern_C Set to true when the C++ routine is extern "C". Defaults to false.

C_force_wrapper If true, always create an explicit C wrapper. When language is c++ a C wrapper is always created.
When wrapping C, the wrapper is automatically created if there is work for it to do. For example, pre_call or
post_call is defined. The user should set this option when wrapping C and the function is really a macro or a
function pointer variable. This forces a function to be created allowing Fortran to use the macro or function
pointer.

C_line_length Control length of output line for generated C. This is not an exact line width, but is instead a hint of
where to break lines. A value of 0 will give the shortest possible lines. Defaults to 72.

C_shadow_result If true, the api for the function result will be set to capptr, otherwise it will be set to capsule. In
both cases, the result is passed from Fortran to the C api as an additional argument. With C_shadow_result true,
a pointer to the capsule is returned as the function result. If false, the C wrapper is a void function. capptr acts
more like C library functions such as strcpy which return a pointer to the result. capsule makes for a simpler
Fortran wrapper implementation since the function result is not used since it is identical to the result argument.

class_baseclass Used to define a baseclass for a struct for wrap_struct_as=class”. The baseclase must already be
defined earlier in the YAML file. It must be in the same namespace as the struct.

- decl: struct Cstruct_as_class
options:
wrap_struct_as: class

- decl: struct Cstruct_as_subclass
options:

(continues on next page)

21.5. Options 123

shroud Documentation, Release 0.13.0

(continued from previous page)

wrap_struct_as: class
class_baseclass: Cstruct_as_class

This is equivelent to the C++ code

.. code-block:: c++

class Cstruct_as_class;
class Cstruct_as_subclass : public Cstruct_as_class;

The corresponding Fortran wrapper will have

type cstruct_as_class
type(STR_SHROUD_capsule_data) :: cxxmem

end type cstruct_as_class
type, extends(cstruct_as_class) :: cstruct_as_class
end type cstruct_as_subclass

class_ctor Indicates that this function is a constructor for a struct. The value is the name of the struct. Useful for
wrap_struct_as=class when used with C.

- decl: struct Cstruct_as_class {
int x1;
int y1;

};
options:
wrap_struct_as: class

- decl: Cstruct_as_class *Create_Cstruct_as_class(void)
options:
class_ctor: Cstruct_as_class

class_method Indicates that this function is a method for a struct.

CXX_standard C++ standard. Defaults to 2011. See nullptr.

debug Print additional comments in generated files that may be useful for debugging. Defaults to false.

debug_index Print index number of function and relationships between C and Fortran wrappers in the wrappers
and json file. The number changes whenever a new function is inserted and introduces lots of meaningless
differenences in the test answers. This option is used to avoid the clutter. If needed for debugging, then set to
true. debug must also be true. Defaults to false.

doxygen If True, create doxygen comments.

F_API_case Controls mangling of C++ library names to Fortran names via the format field F_name_api. Possible val-
ues are lower, upper, underscore, or preserve. Defaults to underscore to convert CamelCase to camel_case.
Since Fortran is case insensitive, users are not required to respect the case of the C++ name. Using underscore
makes the names easier to read regardless of the case.

F_assumed_rank_min Minimum rank of argument with assumed-rank. Defaults to 0 (scalar).

F_assumed_rank_max Maximum rank of argument with assumed-rank. Defaults to 7.

F_blanknull Default value of attribute +blanknull for const char * arguments. This attribute will convert blank
Fortran strings to a NULL pointer.

F_CFI Use the C Fortran Interface provided by Futher Interoperability with C from Fortran 2018 (initially defined in
TS29113 2012).

124 Chapter 21. Reference

shroud Documentation, Release 0.13.0

F_create_bufferify_function Controls creation of a bufferify function. If true, an additional C function is created
which receives bufferified arguments - i.e. the len, len_trim, and size may be added as additional arguments.
Set to false when when you want to avoid passing this information. This will avoid a copy of CHARACTER
arguments required to append a trailing null. Defaults to true.

F_create_generic Controls creation of a generic interface. It defaults to true for most cases but will be set to False
if a function is templated on the return type since Fortran does not distinguish generics based on return type
(similar to overloaded functions based on return type in C++).

F_default_args Decide how to handle C++ default argument functions. See Default Arguments.

generic Create a wrapper for each variation from all arguments to no arguments defaulted. In Fortran, create a
generic interface.

optional Make each default argument as a Fortran OPTIONAL argument.

require Require all arguments to be provided to the wrapper.

F_line_length Control length of output line for generated Fortran. This is not an exact line width, but is instead a hint
of where to break lines. A value of 0 will give the shortest possible lines. Defaults to 72.

F_force_wrapper If true, always create an explicit Fortran wrapper. If false, only create the wrapper when there is
work for it to do; otherwise, call the C function directly. For example, a function which only deals with native
numeric types does not need a wrapper since it can be called directly by defining the correct interface. The
default is false.

F_standard The fortran standard. Defaults to 2003. This effects the mold argument of the allocate statement.

F_return_fortran_pointer Use c_f_pointer in the Fortran wrapper to return a Fortran pointer instead of a
type(C_PTR) in routines which return a pointer. It does not apply to char *, void *, and routines which
return a pointer to a class instance. Defaults to true.

F_string_len_trim For each function with a std::string argument, create another C function which accepts a
buffer and length. The C wrapper will call the std::string constructor, instead of the Fortran wrapper
creating a NULL terminated string using trim. This avoids copying the string in the Fortran wrapper. Defaults
to true.

F_struct_getter_setter If true, a getter and setter will be created for struct members which are a pointer to native
type. This allows a Fortran pointer to be used with the field instead of having to deal with the type(C_PTR)
directly. Default to true

F_trim_char_in Controls code generation for const char * arguments. If True, Fortran perform a TRIM and
concatenates C_NULL_CHAR. If False, it will be done in C. If the only need for the C wrapper is to null-
terminate a string (wrapping a c library and no other argument requires a wrapper), then the C wrapper can be
avoid by moving the null-termination action to Fortran. Default is True.

literalinclude

Write some text lines which can be used with Sphinx’s literalinclude directive. This is used to insert
the generated code into the documentation. Can be applied at the top level or any declaration. Setting
literalinclude at the top level implies literalinclude2.

literalinclude2

Write some text lines which can be used with Sphinx’s literalinclude directive. Only effects some entities
which do not map to a declarations such as some helper functions or types. Only effective at the top level.

Each Fortran interface will be encluded in its own interface block. This is to provide the interface
context when code is added to the documentation.

LUA_API_case Controls mangling of C++ library names to Lua names via the format field LUA_name_api. Possible
values are lower, upper, underscore, or preserve. Defaults to preserve.

21.5. Options 125

shroud Documentation, Release 0.13.0

PY_create_generic Controls creation of a multi-dispatch function with overloaded/templated functions. It defaults
to true for most cases but will be set to False if a function is templated on the return type since Fortran does not
distiuguish generics based on return type (similar to overloaded functions based on return type in C++).

PY_write_helper_in_util When True helper functions will be written into the utility file PY_utility_filename. Useful
when there are lots of classes since helper functions may be duplicated in several files. The value of format
PY_helper_prefix will have C_prefix append to create names that are unique to the library. Defaults to False.

return_scalar_pointer Determines how to treat a function which returns a pointer to a scalar (it does not have the
dimension or rank attribute). scalar return as a scalar or pointer to return as a pointer. This option does not
effect the C or Fortran wrapper. For Python, pointer will return a NumPy scalar. Defaults to pointer.

show_splicer_comments If true show comments which delineate the splicer blocks; else, do not show the com-
ments. Only the global level option is used.

wrap_class_as Defines how a class should be wrapped. If class, wrap using a shadow type. If struct, wrap the
same as a struct. Default is class.

wrap_struct_as Defines how a struct should be wrapped. If struct, wrap a struct as a Fortran derived-type. If
class, wrap a struct the same as a class using a shadow type. Default is struct.

wrap_c If true, create C wrappers. Defaults to true.

wrap_fortran If true, create Fortran wrappers. Defaults to true.

wrap_python If true, create Python wrappers. Defaults to false.

wrap_lua If true, create Lua wrappers. Defaults to false.

21.5.1 Option Templates

Templates are set in options then expanded to assign to the format dictionary to create names in the generated code.

C_enum_template Name of enumeration in C wrapper. {C_prefix}{C_name_scope}{enum_name}

C_enum_member_template Name of enumeration member in C wrapper.
{C_prefix}{C_name_scope}{enum_member_name}

C_header_filename_class_template wrap{file_scope}.{C_header_filename_suffix}

C_header_filename_library_template wrap{library}.{C_header_filename_suffix}

C_header_filename_namespace_template wrap{scope_file}.{C_header_filename_suffix}

C_impl_filename_class_template wrap{file_scope}.{C_impl_filename_suffix}

C_impl_filename_library_template wrap{library}.{C_impl_filename_suffix}

C_impl_filename_namespace_template wrap{scope_file}.{C_impl_filename_suffix}

C_memory_dtor_function_template Name of function used to delete memory allocated by C or C++. defaults to
{C_prefix}SHROUD_memory_destructor.

C_name_template {C_prefix}{C_name_scope}{C_name_api}{function_suffix}{f_c_suffix}{template_suffix}

C_name_typedef_template {C_prefix}{C_name_scope}{typedef_name}

F_C_name_template {F_C_prefix}{F_name_scope}{F_name_api}{function_suffix}{f_c_suffix}{template_suffix}

F_abstract_interface_argument_template The name of arguments for an abstract interface used with function
pointers. Defaults to {F_name_api}_{argname} where argname is the name of the function argument.
see Function Pointers.

F_abstract_interface_subprogram_template The name of the abstract interface subprogram which represents a
function pointer. Defaults to arg{index} where index is the 0-based argument index. See Function Pointers.

126 Chapter 21. Reference

shroud Documentation, Release 0.13.0

F_array_type_template {C_prefix}SHROUD_array

F_capsule_data_type_template Name of the derived type which is the BIND(C) equivalent of the struct used
to implement a shadow class (C_capsule_data_type). All classes use the same derived type. Defaults to
{C_prefix}SHROUD_capsule_data.

F_capsule_type_template {C_prefix}SHROUD_capsule

F_derived_name_template Defaults to {F_name_api}.

F_enum_member_template Name of enumeration member in Fortran wrapper.
{F_name_scope}{enum_member_lower} Note that F_enum_template does not exist since only
the members are in the Fortran code, not the enum name itself.

F_name_generic_template {F_name_api}

F_impl_filename_library_template wrapf{library_lower}.{F_filename_suffix}

F_name_impl_template {F_name_scope}{F_name_api}{function_suffix}{template_suffix}

F_module_name_library_template {library_lower}_mod

F_module_name_namespace_template {file_scope}_mod

F_name_function_template {F_name_api}{function_suffix}{template_suffix}

F_typedef_name_template {F_name_scope}{F_name_api}

LUA_class_reg_template Name of luaL_Reg array of function names for a class.
{LUA_prefix}{cxx_class}_Reg

LUA_ctor_name_template Name of constructor for a class. Added to the library’s table. {cxx_class}

LUA_header_filename_template lua{library}module.{LUA_header_filename_suffix}

LUA_metadata_template Name of metatable for a class. {cxx_class}.metatable

LUA_module_filename_template lua{library}module.{LUA_impl_filename_suffix}

LUA_module_reg_template Name of luaL_Reg array of function names for a library.
{LUA_prefix}{library}_Reg

LUA_name_impl_template Name of implementation function. All overloaded function use the same Lua wrapper
so function_suffix is not needed. {LUA_prefix}{C_name_scope}{underscore_name}

LUA_name_template Name of function as know by Lua. All overloaded function use the same Lua wrapper so
function_suffix is not needed. {function_name}

LUA_userdata_type_template {LUA_prefix}{cxx_class}_Type

LUA_userdata_member_template Name of pointer to class instance in userdata. self

PY_array_arg How to wrap arrays - numpy or list. Applies to function arguments and to structs when
PY_struct_arg is class (struct-as-class). Defaults to numpy. Added to fmt for functions. Useful for c_helpers
in statements.

c_helper="get_from_object_{c_type}_{PY_array_arg}",

PY_module_filename_template py{library}module.{PY_impl_filename_suffix}

PY_header_filename_template py{library}module.{PY_header_filename_suffix}

PY_utility_filename_template py{library}util.{PY_impl_filename_suffix}

PY_PyTypeObject_template {PY_prefix}{cxx_class}_Type

PY_PyObject_template {PY_prefix}{cxx_class}

21.5. Options 127

shroud Documentation, Release 0.13.0

PY_member_getter_template Name of descriptor getter method for a class variable.
{PY_prefix}{cxx_class}_{variable_name}_getter

PY_member_setter_template Name of descriptor setter method for a class variable.
{PY_prefix}{cxx_class}_{variable_name}_setter

PY_member_object_template Name of struct member of type PyObject * which contains the data for member
pointer fields. {variable_name}_obj.

PY_name_impl_template {PY_prefix}{function_name}{function_suffix}{template_suffix}

PY_numpy_array_capsule_name_template Name of PyCapsule object used as base object of NumPy arrays.
Used to make sure a valid capsule is passed to PY_numpy_array_dtor_function. {PY_prefix}array_dtor

PY_numpy_array_dtor_context_template Name of const char * [] array used as the context field for
PY_numpy_array_dtor_function. {PY_prefix}array_destructor_context

PY_numpy_array_dtor_function_template Name of destructor in PyCapsule base object of NumPy arrays.
{PY_prefix}array_destructor_function

PY_struct_array_descr_create_template Name of C/C++ function to create a PyArray_Descr pointer for a
structure. {PY_prefix}{cxx_class}_create_array_descr

PY_struct_arg How to wrap structs - numpy, list or class. Defaults to numpy.

PY_struct_array_descr_variable_template Name of C/C++ variable which is a pointer to a PyArray_Descr
variable for a structure. {PY_prefix}{cxx_class}_array_descr

PY_struct_array_descr_name_template Name of Python variable which is a numpy.dtype for a struct. Can
be used to create instances of a C/C++ struct from Python. np.array((1,3.14), dtype=tutorial.
struct1_dtype) {cxx_class}_dtype

PY_type_filename_template py{file_scope}type.{PY_impl_filename_suffix}

PY_type_impl_template Names of functions for type methods such as tp_init.
{PY_prefix}{cxx_class}_{PY_type_method}{function_suffix}{template_suffix}

PY_use_numpy Allow NumPy arrays to be used in the module. For example, when assigning to a struct-as-class
member.

SH_class_getter_template Name of generated getter function for class members. The wrapped name will be mangled
futher to distinguish scope. Defaults to get_{wrapped_name}.

SH_class_setter_template Name of generated setter function for class members. The wrapped name will be mangled
futher to distinguish scope. Defaults to set_{wrapped_name}.

SH_struct_getter_template Name of generated getter function for struct members. The wrapped name will be man-
gled futher to distinguish scope. Defaults to {struct_name}_get_{wrapped_name}.

SH_struct_setter_template Name of generated setter function for struct members. The wrapped name will be man-
gled futher to distinguish scope. Defaults to {struct_name}_set_{wrapped_name}.

YAML_type_filename_template Default value for global field YAML_type_filename
{library_lower}_types.yaml

21.6 Format Fields

Each scope (library, class, function) has its own format dictionary. If a value is not found in the dictionary, then the
parent scopes will be recursively searched.

128 Chapter 21. Reference

shroud Documentation, Release 0.13.0

21.6.1 Library

C_array_type Name of structure used to store metadata about an array such as its address and size. Defaults to
{C_prefix}SHROUD_array.

C_bufferify_suffix Suffix appended to generated routine which pass strings as buffers with explicit lengths. Defaults
to _bufferify

C_capsule_data_type Name of struct used to share memory information with Fortran. Defaults to
SHROUD_capsule_data.

C_header_filename Name of generated header file for the library. Defaulted from expansion of option
C_header_filename_library_template.

C_header_filename_suffix Suffix added to C header files. Defaults to h. Other useful values might be hh or hxx.

C_header_utility A header file with shared Shroud internal typedefs for the library. Default is types{library}.
{C_header_filename_suffix}.

C_impl_filename Name of generated C++ implementation file for the library. Defaulted from expansion of option
C_impl_filename_library_template.

C_impl_filename_suffix: Suffix added to C implementation files. Defaults to cpp. Other useful values might be cc
or cxx.

C_impl_utility A implementation file with shared Shroud helper functions. Typically routines which are imple-
mented in C but called from Fortran via BIND(C). The must have global scope. Default is util{library}.
{C_header_filename_suffix}.

C_local Prefix for C compatible local variable. Defaults to SHC_.

C_memory_dtor_function Name of function used to delete memory allocated by C or C++.

C_name_api Root name that is used to create various names in the C API. Defaulted by the C_API_case option with
values lower, upper, underscore, or preserve. If set explicitly then C_API_case will have no effect.

May be blank for namespaces to avoid adding the name to C_name_scope.

C_name_scope Underscore delimited name of namespace, class, enumeration. Used to ‘flatten’ nested
C++ names into global C identifiers. Ends with trailing underscore to allow the next scope to
be appended. Does not include toplevel namespace. For example, C_name_template includes
{C_prefix}{C_name_scope}{C_name_api}.

C_name_scope will replace class_name with the instantiated class_name. which will contain a template argu-
ments.

This is a computed using C_name_api and should not be set explicitly.

C_result The name of the C wrapper’s result variable. It must not be the same as any of the routines arguments. It
defaults to rv.

C_string_result_as_arg The name of the output argument for string results. Function which return char
or std::string values return the result in an additional argument in the C wrapper. See also
F_string_result_as_arg.

c_temp Prefix for wrapper temporary working variables. Defaults to SHT_.

C_this Name of the C object argument. Defaults to self. It may be necessary to set this if it conflicts with an
argument name.

CXX_local Prefix for C++ compatible local variable. Defaults to SHCXX_.

CXX_this Name of the C++ object pointer set from the C_this argument. Defaults to SH_this.

21.6. Format Fields 129

shroud Documentation, Release 0.13.0

F_array_type Name of derived type used to store metadata about an array such as its address and size. Default value
from option F_array_type_template which defaults to {C_prefix}SHROUD_array.

F_C_prefix Prefix added to name of generated Fortran interface for C routines. Defaults to c_.

F_capsule_data_type Name of derived type used to share memory information with C or C++. Mem-
ber of F_array_type. Default value from option F_capsule_data_type_template which defaults to
{C_prefix}SHROUD_capsule_data.

Each class has a similar derived type, but with a different name to enforce type safety.

F_capsule_delete_function Name of type-bound function of F_capsule_type which will delete the memory in the
capsule. Defaults to SHROUD_capsule_delete.

F_capsule_final_function Name of function used was FINAL of F_capsule_type. The function is used to release
memory allocated by C or C++. Defaults to SHROUD_capsule_final.

F_capsule_type Name of derived type used to release memory allocated by C or C++. Default value from option
F_capsule_type_template which defaults to {C_prefix}SHROUD_capsule. Contains a F_capsule_data_type.

F_derived_member A F_capsule_data_type use to reference C++ memory. Defaults to cxxmem.

F_derived_member_base The F_derived_member for the base class of a class. Only single inheritance is support
via the EXTENDS keyword in Fortran.

F_filename_suffix Suffix added to Fortran files. Defaults to f. Other useful values might be F or f90.

F_module_name Name of module for Fortran interface for the library. Defaulted from expansion of option
F_module_name_library_template which is {library_lower}_mod. Then converted to lower case.

F_name_api Root name that is used to create various names in the Fortran API. Controlled by the
F_API_case option with values lower, upper, underscore or preserve. Used with options templates
F_C_name_template, F_name_impl_template, F_name_function_template, F_name_generic_template,
F_abstract_interface_subprogram_template, F_derived_name_template, F_typedef_name_template.

F_name_scope Underscore delimited name of namespace, class, enumeration. Used with creating names in Fortran.
Ends with trailing underscore to allow the next scope to be appended. Does not include toplevel namespace.

This is a computed using F_name_api and should not be set explicitly.

F_impl_filename Name of generated Fortran implementation file for the library. Defaulted from expansion of option
F_impl_filename_library_template.

F_result The name of the Fortran wrapper’s result variable. It must not be the same as any of the routines arguments.
It defaults to SHT_rv (Shroud temporary return value).

F_result_ptr The name of the variable used with api capptr for the function result for arguments which create a
shadow type. Defaults to SHT_prv, pointer to return value. Used by option C_shadow_result.

F_string_result_as_arg The name of the output argument. Function which return a char * will instead be con-
verted to a subroutine which require an additional argument for the result. See also C_string_result_as_arg.

F_this Name of the Fortran argument which is the derived type which represents a C++ class. It must not be the same
as any of the routines arguments. Defaults to obj.

file_scope Used in filename creation to identify library, namespace, class.

library The value of global field library.

library_lower Lowercase version of library.

library_upper Uppercase version of library.

LUA_header_filename_suffix Suffix added to Lua header files. Defaults to h. Other useful values might be hh or
hxx.

130 Chapter 21. Reference

shroud Documentation, Release 0.13.0

LUA_impl_filename_suffix Suffix added to Lua implementation files. Defaults to cpp. Other useful values might
be cc or cxx.

LUA_module_name Name of Lua module for library. {library_lower}

LUA_name_api Root name that is used to create various names in the Lua API. Defaulted by the LUA_API_case
option with values lower, upper, underscore, or preserve. If set explicitly then LUA_API_case will have no
effect.

LUA_prefix Prefix added to Lua wrapper functions.

LUA_result The name of the Lua wrapper’s result variable. It defaults to rv (return value).

LUA_state_var Name of argument in Lua wrapper functions for lua_State pointer.

namespace_scope The current C++ namespace delimited with :: and a trailing ::. Used when referencing identi-
fiers: {namespace_scope}id.

nullptr Set to NULL or nullptr based on option CXX_standard. Always NULL when language is C.

PY_ARRAY_UNIQUE_SYMBOL C preprocessor define used by NumPy to allow NumPy to be imported by several
source files.

PY_header_filename_suffix Suffix added to Python header files. Defaults to h. Other useful values might be hh or
hxx.

PY_impl_filename_suffix Suffix added to Python implementation files. Defaults to cpp. Other useful values might
be cc or cxx.

PY_module_init Name of module and submodule initialization routine. library and namespaces delimited by _.
Setting PY_module_name will update PY_module_init.

PY_module_name Name of generated Python module. Defaults to library name or namespace name.

PY_module_scope Name of module and submodule initialization routine. library and namespaces delimited by ..
Setting PY_module_name will update PY_module_scope.

PY_name_impl Name of Python wrapper implemenation function. Each class and namespace is implemented in its
own function with file static functions. There is no need to include the class or namespace in this name. Defaults
to {PY_prefix}{function_name}{function_suffix}.

PY_prefix Prefix added to Python wrapper functions.

PY_result The name of the Python wrapper’s result variable. It defaults to SHTPy_rv (return value). If the function
returns multiple values (due to intent(out)) and the function result is already an object (for example, a NumPy
array) then PY_result will be SHResult.

file_scope library plus any namespaces. The namespaces listed in the top level variable namespace is not included in
the value. It is assumed that library will be used to generate unique names. Used in creating a filename.

stdlib Name of C++ standard library prefix. blank when language=c. std:: when language=c++.

YAML_type_filename Output filename for type maps for classes.

21.6.2 Enumeration

cxx_value Value of enum from YAML file.

enum_lower

enum_name

enum_upper

enum_member_lower

21.6. Format Fields 131

shroud Documentation, Release 0.13.0

enum_member_name

enum_member_upper

flat_name Scoped name of enumeration mapped to a legal C identifier. Scope operator :: replaced with _. Used with
C_enum_template.

C_enum_member C name for enum member. Computed from option C_enum_member_template.

C_value Evalued value of enumeration. If the enum does not have an explict value, it will not be present.

C_scope_name Set to flat_name with a trailing undersore. Except for non-scoped enumerations in which case it is
blank. Used with C_enum_member_template. Does not include the enum name in member names for non-
scoped enumerations.

F_scope_name Value of C_scope_name converted to lower case. Used with F_enum_member_template.

F_enum_member Fortran name for enum member. Computed from option F_enum_member_template.

F_value Evalued value of enumeration. If the enum does not have an explict value, it is the previous value plus one.

21.6.3 Class

C_header_filename Name of generated header file for the class. Defaulted from expansion of option
C_header_filename_class_template.

C_impl_file Name of generated C++ implementation file for the library. Defaulted from expansion of option
C_impl_filename_class_template.

F_derived_name Name of Fortran derived type for this class. Computed from option F_derived_name_template.

F_name_assign Name of method that controls assignment of shadow types. Used to help with reference counting.

F_name_associated Name of method to report if shadow type is associated. If the name is blank, no function is
generated.

F_name_final Name of function used in FINAL for a class.

F_name_instance_get Name of method to get type(C_PTR) instance pointer from wrapped class. Defaults to
get_instance. If the name is blank, no function is generated.

F_name_instance_set Name of method to set type(C_PTR) instance pointer in wrapped class. Defaults to
set_instance. If the name is blank, no function is generated.

cxx_class The name of the C++ class from the YAML input file. Used in generating names for C and Fortran and
filenames. When the class is templated, it willl be converted to a legal identifier by adding the template_suffix
or a sequence number.

When cxx_class is set in the YAML file for a class, its value will be used in class_scope, C_name_scope,
F_name_scope and F_derived_name.

cxx_type The namespace qualified name of the C++ class, including information from template_arguments, ex.
std::vector<int>. Same as cxx_class if template_arguments is not defined. Used in generating C++
code.

class_scope Used to to access class static functions. Blank when not in a class. {cxx_class}::

C_prefix Prefix for C wrapper functions. The prefix helps to ensure unique global names. Defaults to the first three
letters of library_upper.

PY_helper_prefix Prefix added to helper functions for the Python wrapper. This allows the helper functions to
have names which will not conflict with any wrapped routines. When option PY_write_helper_in_util is True,
C_prefix will be prefixed to the value to ensure the helper functions will not conflict with any routines in other
wrapped libraries.

132 Chapter 21. Reference

shroud Documentation, Release 0.13.0

PY_type_obj Name variable which points to C or C++ memory. Defaults to obj.

PY_type_dtor Pointer to information used to release memory.

PY_PyTypeObject Name of PyTypeObject variable for a C++ class. Computed from option PY_PyTypeObject.

PY_PyTypeObject_base The name of PyTypeObject variable for base class of C++ class. Only single inheritance is
support via the tp_base field of PyTypeObject struct.

21.6.4 Function

C_call_list Comma delimited list of function arguments.

C_name Name of the C wrapper function. Defaults to evaluation of option C_name_template.

C_prototype C prototype for the function. This will include any arguments required by annotations or options, such
as length or F_string_result_as_arg.

C_return_type Return type of the C wrapper function. If the return_this field is true, then set to void.

Set to function’s return type.

CXX_template The template component of the function declaration. <{type}>

CXX_this_call How to call the function. {CXX_this}-> for instance methods and blank for library functions.

F_arg_c_call Comma delimited arguments to call C function from Fortran.

F_arguments Set from option F_arguments or generated from YAML decl.

F_C_arguments Argument names to the bind(C) interface for the subprogram. Arguments are tab delimited to aid
in creating continuations.

F_C_call The name of the C function to call. Usually F_C_name, but it may be different if calling a generated routine.
This can be done for functions with string arguments.

F_C_name Name of the Fortran BIND(C) interface for a C function. Defaults to the lower case version of
F_C_name_template.

F_C_pure_clause TODO

F_C_result_clause Result clause for the bind(C) interface.

F_C_subprogram subroutine or function for the bind(C) interface. The C wrapper funtion may be differ-
ent Fortran wrapper function since some function results may be converted into arguments.

F_C_var Name of dummy argument in the bind(C) interface.

F_pure_clause For non-void function, pure if the pure annotation is added or the function is const and all argu-
ments are intent(in).

F_name_function The name of the F_name_impl subprogram when used as a type procedure. Defaults to evaluation
of option F_name_function_template.

F_name_generic Defaults to evaluation of option F_name_generic_template.

F_name_impl Name of the Fortran implementation function. Defaults to evaluation of option F_name_impl_template
.

F_result_clause ‘‘ result({F_result})‘‘ for functions. Blank for subroutines.

f_c_suffix Set by Shroud to allow the Fortran wrapper to call a C wrapper with additional mangling. Usually set to
the value of C_bufferify_suffix or C_cfi_suffix.

function_name Name of function in the YAML file.

21.6. Format Fields 133

shroud Documentation, Release 0.13.0

function_suffix String append to a generated function name. Useful to distinguish overloaded function and functions
with default arguments. Defaults to a sequence number with a leading underscore (e.g. _0, _1, . . .) but can
be set by using the function field function_suffix. Multiple suffixes may be applied – overloaded with default
arguments.

LUA_name Name of function as known by LUA. Defaults to evaluation of option LUA_name_template.

template_suffix String which is append to the end of a generated function names to distinguish template instatiations.
Default values generated by Shroud will include a leading underscore. i.e _int or _0.

underscore_name function_name converted from CamelCase to snake_case.

21.6.5 Argument

c_array_shape

c_array_size

c_array_size2 The dimension attributes multiplied together.

c_char_len The value of the len attribute. It willl be evalued in the C wrapper. Defaults to 0 to indicate no length
given.

c_blanknull Used as argument to ShroudStrAlloc to determine if a blank string, trimmed length is 0, should
be a NULL pointer instead of an empty C string – '\0'. Set via attribute +blanknull on a const char *
argument. Should be 0 or 1.

c_const const if argument has the const attribute.

c_deref Used to dereference c_var. * if it is a pointer, else blank.

c_var The C name of the argument.

c_var_cdesc Name of variable of type

c_var_cdesc2

c_var_extents

c_var_lower

chelper_* Helper name for a function. Each name in statements c_helper will create a format name which starts
with chelper_ and end with the helper name. It will contain the name of the C function for the helper. Used by
statements c_pre_call and c_post_call statements.

cxx_addr Syntax to take address of argument. & or blank.

cxx_nonconst_ptr A non-const pointer to cxx_addr using const_cast in C++ or a cast for C.

cxx_member Syntax to access members of cxx_var. If cxx_local_var is object, then set to .; if pointer, then set to
->.

cxx_T The template parameters for templated arguments. std::vector<{cxx_T}>

cxx_type The C++ type of the argument.

cxx_var Name of the C++ variable.

size_var Name of variable which holds the size of an array in the Python wrapper.

fmtc

Format strings used with C wrappers. Set for each argument.

134 Chapter 21. Reference

shroud Documentation, Release 0.13.0

fmtf

Format strings used with Fortran wrappers. Set for each argument.

c_var The name of the argument passed to the C wrapper. This is initially the same as f_var but when the statement
field c_local_var is true, another name will be generated of the form SH_{f_var}. A declaration will also be
added using typemap.f_c_type.

default_value The value of a C++ default value argument.

f_array_allocate Fortran shape expression used with ALLOCATE statement when dimension attribute is set. For
example, attribute +dimension(10) will create (10).

f_array_shape Shape of array for use with c_f_pointer. For example, attribute +dimension(10) will create‘‘,t
SHT_rv_cdesc%shape(1:1)‘‘. The leading comma is used since scalar will not add a SHAPE argument to
c_f_pointer.

f_assumed_shape Set when rank attribute is set to the corresponding shape. rank=1 sets to (:), rank=2 sets to
(:,:), etc. May also be set to (..) when attribute +dimension(..) is used and option F_CFI is True.

f_c_module_line Typemap.f_c_module in a format usable by FStmts.f_module_line. The dictionary is converted into
the string.

f_capsule_data_type The name of the derived type used to share memory information with C or C++.
F_capsule_data_type for the argument type.

f_cdesc_shape Used to assign the rank of a Fortran variable to a cdesc variable. It will be blank for a scalar. ex:
\nSHT_arg_cdesc%shape(1:1) = shape(arg)

f_char_len Defaults to : for defered length used with allocatable variables. Used in statements as
character({f_char_len).

f_char_type Character type used in ALLOCATE statements. Based on len attributes. Defaults to blank for
CHARACTER types which have an explicit length in the type declaration - CHARACTER(20).. Oth-
erwise set to character(len={c_var_cdesc}%elem_len) :: `` which uses the
length computed by the C wrapper and stored in elem_len. For example,
find the maximum length of strings in a ``char ** argument. Used in statements
as allocate({f_char_type}(f_var}).

f_declare_shape_prefix

f_declare_shape_array

f_get_shape_array

f_kind Value from typemap. ex C_INT. Can be used in CStmts.f_module_line.

f_pointer_shape

f_shape_var

f_type Value from typemap. ex integer(C_INT).

f_var Fortran variable name for argument.

fhelper_* Helper name for a function. Each name in statements f_helper will create a format name which starts with
fhelper_ and end with the helper name. It will contain the name of the Fortran function for the helper. Used by
statements f_pre_call and f_post_call statements.

i_dimension Dimension used in bind(C) interface. May be assumed-size, (*) or assumed-rank, (..).

i_module_line Used with Fortran interface.

i_type Used with Fortran interface.

21.6. Format Fields 135

shroud Documentation, Release 0.13.0

size Expression to compute size of array argument using SIZE intrinsic.

fmtl

Format strings used with Lua wrappers.

fmtpy

Format strings used with Python wrappers.

array_size Dimensions multipled together. dimension(2,3) creates (2)*(3).

rank Attribute value for rank.

21.6.6 Result

cxx_rv_decl Declaration of variable to hold return value for function.

21.6.7 Variable

PY_struct_context Prefix used to to access struct/class variables. Includes trailing syntax to access member in a
struct i.e. . or ->. self->obj->.

21.7 Types Map

Types describe how to handle arguments from Fortran to C to C++. Then how to convert return values from C++ to C
to Fortran.

Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a standardized way to generate procedure and derived-type
declarations and global variables which are interoperable with C (ISO/IEC 9899:1999). The bind(C) attribute has
been added to inform the compiler that a symbol shall be interoperable with C; also, some constraints are added. Note,
however, that not all C features have a Fortran equivalent or vice versa. For instance, neither C’s unsigned integers nor
C’s functions with variable number of arguments have an equivalent in Fortran.1

forward Forward declaration. Defaults to None.

typedef Initialize from existing type Defaults to None.

f_return_code Fortran code used to call function and assign the return value. Defaults to None.

f_to_c Expression to convert Fortran type to C type. If this field is set, it will be used before f_cast. Defaults to None.

21.8 Doxygen

Used to insert directives for doxygen for a function.

brief Brief description.

description Full description.

return Description of return value.

1 https://gcc.gnu.org/onlinedocs/gfortran/Interoperability-with-C.html

136 Chapter 21. Reference

https://gcc.gnu.org/onlinedocs/gfortran/Interoperability-with-C.html

shroud Documentation, Release 0.13.0

21.9 Patterns

C_error_pattern Inserted after the call to the C++ function in the C wrapper. Format is evaluated in the context of
the result argument. c_var, c_var_len refer to the result argument.

C_error_pattern_buf Inserted after the call to the C++ function in the buffer C wrapper for functions with string
arguments. Format is evaluated in the context of the result argument.

PY_error_pattern Inserted into Python wrapper.

21.9. Patterns 137

shroud Documentation, Release 0.13.0

138 Chapter 21. Reference

CHAPTER 22

Releases

Notes to help migrate between releases.

22.1 Unreleased

• Rename some fields in Statements to allow C and Fortran entries to exist in the same group by consistently using
a c_, i_ or f_ prefix. This allows a single group to contains all the fields used for more complex conversions
making it easier to follow the flow.

This will change the name of fields in fstatements in an input YAML file. These are used to changed the default
behavior of a wrapper.

- decl: void vector_iota_out_with_num(std::vector<int> &arg+intent(out))
fstatements:
c:
c_return_type: long
c_return:
- return SHT_arg_cdesc->size;

139

shroud Documentation, Release 0.13.0

Table 1: c statements
Old Name New Name
arg_call c_arg_call
pre_call c_pre_call
call c_call
post_call c_post_call
final c_final
ret c_return
temps c_temps
local c_local
f_arg_decl i_arg_decl
f_result_decl i_result_decl
f_result_var i_result_var
f_module i_module
f_import i_import

Table 2: f statements
Old Name New Name
need_wrapper f_need_wrapper
arg_name f_arg_name
arg_decl f_arg_decl
arg_c_call f_arg_call
declare f_declare
pre_call f_pre_call
call f_call
post_call f_post_call
result f_result
temps f_temps
local f_local

• Added format field f_c_suffix. Used in format fields **C_name_template* and F_C_name_template* to allow
Fortran wrapper to call a C function with additional mangling such as **C_cfi_suffix and C_bufferify_suffix.
Previously this was appended directly to format field *function_suffix. If **C_name_template* or
F_C_name_template* are explicitly set in the YAML file then *f_c_suffix should be included in the value.

• Renamed format fields hnamefunc. These fields were added from the statement fields c_helper and f_helper,
each a blank delimited list of names. A format field was added for each name with a 0-based suffix corresponding
to the position in the list. Now, the format fields have the prefix of chelper_ or fhelper_ followed by the helpers
name. For example, fhelper_copy_array. This makes it easier to match the corresponding helper and will help
when using statement mixin groups since the order of names will no longer matter.

22.2 v0.13.0

22.2.1 Changes

• Some generated wrapper names have been changed to be more consistent. Added format field F_name_api.
It is controlled by option F_API_case which may be set to lower, upper, underscore or preserve. Uses of
format field underscore_name should be changed to F_name_api. It’s often used in name options such as
F_name_impl_template and F_name_generic_template.

140 Chapter 22. Releases

shroud Documentation, Release 0.13.0

Likewise, C API names are controlled by option C_name_api. The default is preserve. The previous behavior
can be restored by setting option C_API_case to underscore.

F_API_case defaults to underscore since Fortran is case insensitive. F_C_case defaults to preserve to make the
C API closer to the C++ API.

• Changed the name of C and Python function splicer to use function_name instead of underscore_name to cor-
respond to C++ library names.

• The C_memory_dtor_function is now written to the utility file, C_impl_utility. This function contains code to
delete memory from shadow classes. Previously it was written to file C_impl_filename. In addition, some helper
functions are also written into this file. This may require changes to Makefiles to ensure this file is compiled.

• A single capsule derived type is created in the Fortran wrapper instead of one per class. This is considered an
implementation detail and a user of the wrapper will not access them directly. However, it may show up in
splicer code. It is used to pass values from the Fortran wrapper to the C wrapper. The old type names may
of been referenced in explicit splicer code. In that case the name will need to be changed. The format field
F_capsule_data_type_class is replaced by F_capsule_data_type. The C wrapper continues to create a capsule
struct for each class as a form of type safety in the C API.

• Class instance arguments which are passed by value will now pass the shadow type by reference. This allows
the addr and idtor fields to be changed if necessary by the C wrapper.

• Replaced the additional_interfaces splicer with additional_declarations. This new splicer is outside of an in-
terface block and can be used to add add a generic interface that could not be added to additional_interfaces.
Existing additional_interfaces splicers can be converted to additional_declarations by wrapping the splicer with
INTERFACE/END INTERFACE.

22.2.2 New Features

• Added support for C++ class inheritance. See Class Inheritance

• Added the ability to treat a struct as a class. See Object-oriented C

• Added the ability to declare members of a struct on individual decl lines in the YAML file similar to how class
members are defined. Before the struct was defined in a single decl:.

• Allow structs to be templated.

• Added the ability to declare variables using the enum keyword. C++ creates a type for each enumeration.

• Generate generic interface which allows a scalar or array to be passed for an argument.

• Process assumed-rank dimension attribute, dimension(..). Create a generic interface using scalar and each rank.

• Added some support for Futher Interoperability with C. Used when option F_CFI is True (C/Fortran Interoper-
ability).

• Support deref(pointer) for char * and std::string functions. Requires at least gfortran 6.1.0

• Added option F_trim_char_in. Controls where CHARACTER arguments are NULL terminated. If True then
terminated in Fortran else in C.

• Added attribute +blanknull to convert a blank Fortran string into a NULL pointer instead of a 1-d buffer with
'/0'. Used with const char * arguments. This can be defaulted to True with the F_blanknull option.

• Added file_code dictionary to input YAML file. It contains directives to add header file and USE statements
into generated files. These are collated with headers and USE statements added by typemaps, statements and
helpers to avoid duplication.

• Allow typemaps with base as integer and real to be added to the input YAML file. This allows kind parameters
to be defined via splicers then used by a typemap. i.e. integer(INDEXTYPE)

22.2. v0.13.0 141

shroud Documentation, Release 0.13.0

• Added option C_shadow_result. If true, the C wrapper will return a pointer to the capsule holding the function
result. The capsule is also passed as an argument. If false the function is void.

• The getter for a class member function will return a Fortran pointer if the dimension attribute is added to the
declaration. Likewise, the setter will expect an array of the same rank as dimension. Getter and setters will also
be generated for struct fields which are pointers to native types. Option F_struct_getter_setter can be used to
control their creation.

• Added ability to add splicer to typedef declarations. For example, to use the C preprocessor to set the type
of the typedef. See typedefs.yaml for an example.

• Added support for out arguments which return a reference to a std::vector or pointer to an array of
std::string.

• Create C and Fortran wrappers for typedef statements. Before typedef was treated as an alias.
typedef int TypeID would substitute integer(C_INT) for every use of TypeID in the Fortran
wrapper. Now a parameter is created: integer, parameter :: type_id = C_INT. Used as:
integer(type_id) :: arg.

22.2.3 Fixed

• Order of header files in cxx_header is preserved in the generated code.

• Create a generic interface even if only one decl is in the fortran_generic list.

• generic_function now creates a C wrapper for each Fortran wrapper. This causes each Fortran interface to bind
to a different C function which fixes a compile error with xlf.

• Add generic interfaces for class methods. Generic functions where only being added to the type-bound proce-
dures. class_generic(obj) now works instead of only obj%generic().

• Add continuations on Fortran IMPORT statements.

• Support an array of pointers - void **addr+rank(1).

• Fix Fortran wrapper for intent(INOUT) for void **.

• Promote wrap options (ex wrap_fortran) up to container when True (library, class, namespace). This allows
wrap_fortran to be False at the global level and set True on a function and get a wrapper. Before a False at the
global level would never attempt to do any wrapping.

• Better support for std::vector with pointer template arguments. For examples, <const double *>.

• Parse class, struct and enum as part of declaration. This allows typedef struct tag name to be
parsed properly.

• Create type table earlier in parse. This allows recursive structs such as struct point { struct point

*next; } to be parsed.

• Fixed issues in converting function names from CamelCase

– Remove redundant underscore Create_Cstruct_as_class was
c_create__cstruct_as_class now c_create_cstruct_as_class

– Add missing underscore AFunction was afunction now a_function.

142 Chapter 22. Releases

CHAPTER 23

Fortran Previous Work

Communicating between languages has a long history.

23.1 Babel

https://computation.llnl.gov/projects/babel-high-performance-language-interoperability Babel parses a SIDL (Scien-
tific Interface Definition Language) file to generate source. It is a hub-and-spokes approach where each language it
supports is mapped to a Babel runtime object. The last release was 2012-01-06. http://en.wikipedia.org/wiki/Babel_
Middleware

23.2 Cfortran.h

Used with Fortran 77 and C.

• https://www-zeus.desy.de/~burow/cfortran/

• https://cfortran.sourceforge.net/

23.3 Chasm

http://chasm-interop.sourceforge.net/ - This page is dated July 13, 2005

Chasm is a tool to improve C++ and Fortran 90 interoperability. Chasm parses Fortran 90 source code and auto-
matically generates C++ bridging code that can be used in C++ programs to make calls to Fortran routines. It also
automatically generates C structs that provide a bridge to Fortran derived types. Chasm supplies a C++ array descrip-
tor class which provides an interface between C and F90 arrays. This allows arrays to be created in one language and
then passed to and used by the other language. http://www.cs.uoregon.edu/research/pdt/users.php

• CHASM: Static Analysis and Automatic Code Generation for Improved Fortran 90 and C++ Interoperability
C.E. Rasmussen, K.A. Lindlan, B. Mohr, J. Striegnitz

143

https://computation.llnl.gov/projects/babel-high-performance-language-interoperability
http://en.wikipedia.org/wiki/Babel_Middleware
http://en.wikipedia.org/wiki/Babel_Middleware
https://www-zeus.desy.de/~burow/cfortran/
https://cfortran.sourceforge.net/
http://chasm-interop.sourceforge.net/
http://www.cs.uoregon.edu/research/pdt/users.php
http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-01-4955

shroud Documentation, Release 0.13.0

• Bridging the language gap in scientific computing: the Chasm approach C. E. Rasmussen, M. J. Sottile, S. S.
Shende, A. D. Malony (2005)

23.4 wrap

https://github.com/scalability-llnl/wrap

a PMPI wrapper generator

23.5 Trilinos

http://trilinos.org/

Trilonos wraps C++ with C, then the Fortran over the C. Described in the book Scientific Software Design. http:
//www.amazon.com/Scientific-Software-Design-The-Object-Oriented/dp/0521888131

• On the object-oriented design of reference-counted shadow objects Karla Morris, Damian W.I. Rouson, Jim Xia
(2011)

• This Isn’t Your Parents’ Fortran: Managing C++ Objects with Modern Fortran Damian Rouson, Karla Morris,
Jim Xia (2012)

Directory packages/ForTrilinos/src/skeleton has a basic template which must be edited to create a wrapper for a class.

Exascale Programming: Adapting What We Have Can (and Must) Work

In 2009 and 2010, the C++ based Trilinos project developed Fortran interface capabilities, called ForTrili-
nos. As an object-oriented (OO) collection of libraries, we assumed that the OO features of Fortran 2003
would provide us with natural mappings of Trilinos classes into Fortran equivalents. Over the two-year
span of the ForTrilinos effort, we discovered that compiler support for 2003 features was very imma-
ture. ForTrilinos developers quickly came to know the handful of compiler developers who worked on
these features and, despite close collaboration with them to complete and stabilize the implementation of
Fortran 2003 features (in 2010), ForTrilinos stalled and is no longer developed.

http://www.hpcwire.com/2016/01/14/24151/

https://github.com/Trilinos/ForTrilinos https://www.researchgate.net/project/ForTrilinos

This is the new effort to provide Fortran interfaces to Trilinos through automatic code generation using SWIG. The
previous effort (ca. 2008-2012) can be obtained by downloading Trilinos releases prior to 12.12.

https://trilinos.github.io/ForTrilinos/files/ForTrilinos_Design_Document.pdf

23.6 SWIG

The custom version of swig available at https://github.com/swig-fortran/swig

• https://github.com/swig-fortran/flibcpp

• http://www.icl.utk.edu/~luszczek/conf/2019/siam_cse/siam-cse-johnsonsr.pdf

• https://info.ornl.gov/sites/publications/Files/Pub127965.pdf

• Documenting automated Fortran-C++ bindings with SWIG

• IDEAS-ECP Webinar: Automated Fortran-C++ Bindings for Large-Scale Scientific Applications

144 Chapter 23. Fortran Previous Work

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.909
https://github.com/scalability-llnl/wrap
http://trilinos.org/
http://www.amazon.com/Scientific-Software-Design-The-Object-Oriented/dp/0521888131
http://www.amazon.com/Scientific-Software-Design-The-Object-Oriented/dp/0521888131
https://dl.acm.org/citation.cfm?doid=1985782.1985786
http://ieeexplore.ieee.org/document/6159199
http://www.hpcwire.com/2016/01/14/24151/
https://github.com/Trilinos/ForTrilinos
https://www.researchgate.net/project/ForTrilinos
https://trilinos.github.io/ForTrilinos/files/ForTrilinos_Design_Document.pdf
https://github.com/swig-fortran/swig
https://github.com/swig-fortran/flibcpp
http://www.icl.utk.edu/~luszczek/conf/2019/siam_cse/siam-cse-johnsonsr.pdf
https://info.ornl.gov/sites/publications/Files/Pub127965.pdf
https://www.osti.gov/biblio/1557490
https://www.youtube.com/watch?v=mC67NVuz6WI

shroud Documentation, Release 0.13.0

23.7 MPICH

MPICH uses a custom perl scripts which has routine names and types in the source.

http://git.mpich.org/mpich.git/blob/HEAD:/src/binding/fortran/use_mpi/buildiface

23.8 GTK

gtk-fortran uses a python script which parse the C header files to generate the Fortran.

https://github.com/jerryd/gtk-fortran/blob/master/src/cfwrapper.py https://github.com/vmagnin/gtk-fortran/wiki https:
//github.com/vmagnin/gtk-fortran/wiki/How-gtk-fortran-is-generated

23.9 CDI

CDI is a C and Fortran Interface to access Climate and NWP model Data. https://code.zmaw.de/projects/cdi

“One part of CDI[1] is a such generator. It still has some rough edges and we haven’t yet decided what to do about
functions returning char * (it seems like that will need some wrapping unless we simply return TYPE(c_ptr) and let
the caller deal with that) but if you’d like to have a starting point in Ruby try interfaces/f2003/bindGen.rb from the
tarball you can download” https://groups.google.com/d/msg/comp.lang.fortran/oadwd3HHtGA/J8DD8kGeVw8J

23.10 Forpy

This is a Fortran interface over the Python API written using the metaprogramming tool Fypp.

• Forpy: A library for Fortran-Python interoperability

• Fypp — Python powered Fortran metaprogramming

23.11 CNF

http://www.starlink.ac.uk/docs/sun209.htx/sun209.html

The CNF package comprises two sets of software which ease the task of writing portable programs in a mixture of
FORTRAN and C. F77 is a set of C macros for handling the FORTRAN/C subroutine linkage in a portable way, and
CNF is a set of functions to handle the difference between FORTRAN and C character strings, logical values and
pointers to dynamically allocated memory.

23.12 h2m-AutoFortran

https://github.com/Kaiveria/h2m-Autofortran-Tool

The h2m-AutoFortran tool is designed to allow easy calls to C routines from Fortran programs. Given a header file
in standard C, h2m will produce a Fortran module providing function interfaces which maintain interoperability with
C. Features for which there are no Fortran equivalents will not be translated and warnings will be written to standard
error. The h2m-AutoFortran tool is built into Clang, the LLVM C compiler. During translation, the Clang abstract
syntax tree (AST) is used to assemble information about the header file.

23.7. MPICH 145

http://git.mpich.org/mpich.git/blob/HEAD:/src/binding/fortran/use_mpi/buildiface
https://github.com/jerryd/gtk-fortran/blob/master/src/cfwrapper.py
https://github.com/vmagnin/gtk-fortran/wiki
https://github.com/vmagnin/gtk-fortran/wiki/How-gtk-fortran-is-generated
https://github.com/vmagnin/gtk-fortran/wiki/How-gtk-fortran-is-generated
https://code.zmaw.de/projects/cdi
https://groups.google.com/d/msg/comp.lang.fortran/oadwd3HHtGA/J8DD8kGeVw8J
https://github.com/ylikx/forpy
https://github.com/aradi/fypp
http://www.starlink.ac.uk/docs/sun209.htx/sun209.html
https://github.com/Kaiveria/h2m-Autofortran-Tool

shroud Documentation, Release 0.13.0

23.13 Links

• Technical Specification ISO/IEC TS 29113:2012

• Generating C Interfaces

• Shadow-object interface between Fortran95 and C++ Mark G. Gray, Randy M. Roberts, and Tom M. Evans
(1999)

• Generate C interface from C++ source code using Clang libtooling

• Memory leaks in derived types revisited G. W. Stewart (2003)

• A General Approach to Creating Fortran Interface for C++ Application Libraries

• C, Fortran, and single-character strings

• Emulating Multiple Inheritance in Fortran 2003/2008

146 Chapter 23. Fortran Previous Work

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45136
http://fortranwiki.org/fortran/show/Generating+C+Interfaces
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=753048
http://samanbarghi.com/blog/2016/12/06/generate-c-interface-from-c-source-code-using-clang-libtooling/
https://dl.acm.org/citation.cfm?id=962183
https://link.springer.com/chapter/10.1007/3-540-27912-1_14
https://lwn.net/Articles/791393/
https://www.hindawi.com/journals/sp/2015/126069/

CHAPTER 24

Python Previous Work

There a several available tools to creating a Python interface to a C or C++ library.

24.1 Ctypes

• http://docs.python.org/lib/module-ctypes.html

24.1.1 Pros

• No need for compiler.

24.1.2 Cons

• Difficult wrapping C++ due to mangling and object ABI.

24.2 SWIG

• http://www.swig.org/

24.3 PyBindgen

• https://github.com/gjcarneiro/pybindgen

• http://pybindgen.readthedocs.io/en/latest/

147

http://docs.python.org/lib/module-ctypes.html
http://www.swig.org/
https://github.com/gjcarneiro/pybindgen
http://pybindgen.readthedocs.io/en/latest/

shroud Documentation, Release 0.13.0

24.4 Cython

• http://cython.org

• https://cython.readthedocs.io/en/latest/

http://blog.kevmod.com/2020/05/python-performance-its-not-just-the-interpreter/

I ran Cython (a Python->C converter) on the previous benchmark, and it runs in exactly the same amount of time:
2.11s. I wrote a simplified C extension in 36 lines compared to Cython’s 3600, and it too runs in 2.11s.

24.5 SIP

Sip was developed to create PyQt.

• https://www.riverbankcomputing.com/software/sip/intro

24.6 Shiboken

Shiboken was developed to create PySide.

• https://wiki.qt.io/Qt_for_Python

• http://doc.qt.io/qtforpython/shiboken2/contents.html

24.7 Boost Python

• https://www.boost.org/doc/libs/1_66_0/libs/python/doc/html/index.html

24.8 Pybind11

• https://github.com/pybind/pybind11

• https://pybind11.readthedocs.io/en/stable/

24.9 Links

• Interfacing with C - Scipy lecture notes

• SciPy Cookbook

148 Chapter 24. Python Previous Work

http://cython.org
https://cython.readthedocs.io/en/latest/
http://blog.kevmod.com/2020/05/python-performance-its-not-just-the-interpreter/
https://www.riverbankcomputing.com/software/sip/intro
https://wiki.qt.io/Qt_for_Python
http://doc.qt.io/qtforpython/shiboken2/contents.html
https://www.boost.org/doc/libs/1_66_0/libs/python/doc/html/index.html
https://github.com/pybind/pybind11
https://pybind11.readthedocs.io/en/stable/
https://www.scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html
https://scipy-cookbook.readthedocs.io/

CHAPTER 25

Future Work

• complex

• pointers to pointers and in particular char ** are not supported. An argument like Class

**ptr+intent(out) does not work. Instead use a function which return a pointer to Class *

• reference counting and garbage collection

• Support for Further Interoperability of Fortran with C. This includes the ISO_Fortran_binding.h header file.

The copying of strings solves the blank-filled vs null-terminated differences between Fortran and C and works well
for many strings. However, if a large buffer is passed, it may be desirable to avoid the copy.

There is some initial work to support Python and Lua wrappers.

25.1 Possible Future Work

Use a tool to parse C++ and extract info.

• https://github.com/CastXML/CastXML

• https://pypi.python.org/pypi/pygccxml

• Wrapping C and C++ Libraries with CastXML | SciPy 2015 | Brad King, Bill Hoff-
man, Matthew McCormick https://www.youtube.com/watch?v=O2lBgtaDdyk&index=20&list=
PLYx7XA2nY5Gcpabmu61kKcToLz0FapmHu

149

https://github.com/CastXML/CastXML
https://pypi.python.org/pypi/pygccxml
https://www.youtube.com/watch?v=O2lBgtaDdyk&index=20&list=PLYx7XA2nY5Gcpabmu61kKcToLz0FapmHu
https://www.youtube.com/watch?v=O2lBgtaDdyk&index=20&list=PLYx7XA2nY5Gcpabmu61kKcToLz0FapmHu

shroud Documentation, Release 0.13.0

150 Chapter 25. Future Work

CHAPTER 26

Sample Fortran Wrappers

This chapter gives details of the generated code. It’s intended for users who want to understand the details of how the
wrappers are created.

All of these examples are derived from tests in the regression directory.

26.1 No Arguments

C library function in clibrary.c:

void NoReturnNoArguments(void)
{

strncpy(last_function_called, "Function1", MAXLAST);
return;

}

clibrary.yaml:

- decl: void NoReturnNoArguments()

Fortran calls C via the following interface:

interface
subroutine no_return_no_arguments() &

bind(C, name="NoReturnNoArguments")
implicit none

end subroutine no_return_no_arguments
end interface

If wrapping a C++ library, a function with a C API will be created that Fortran can call.

void TUT_NoReturnNoArguments(void)
{

(continues on next page)

151

shroud Documentation, Release 0.13.0

(continued from previous page)

// splicer begin function.NoReturnNoArguments
tutorial::NoReturnNoArguments();
// splicer end function.NoReturnNoArguments

}

Fortran usage:

use tutorial_mod
call no_return_no_arguments

The C++ usage is similar:

#include "tutorial.hpp"

tutorial::NoReturnNoArguments();

26.2 Numeric Types

26.2.1 PassByValue

C library function in clibrary.c:

double PassByValue(double arg1, int arg2)
{

strncpy(last_function_called, "PassByValue", MAXLAST);
return arg1 + arg2;

}

clibrary.yaml:

- decl: double PassByValue(double arg1, int arg2)

Both types are supported directly by the iso_c_binding module so there is no need for a Fortran function. The C
function can be called directly by the Fortran interface using the bind(C) keyword.

Fortran calls C via the following interface:

interface
function pass_by_value(arg1, arg2) &

result(SHT_rv) &
bind(C, name="PassByValue")

use iso_c_binding, only : C_DOUBLE, C_INT
implicit none
real(C_DOUBLE), value, intent(IN) :: arg1
integer(C_INT), value, intent(IN) :: arg2
real(C_DOUBLE) :: SHT_rv

end function pass_by_value
end interface

Fortran usage:

real(C_DOUBLE) :: rv_double
rv_double = pass_by_value(1.d0, 4)
call assert_true(rv_double == 5.d0)

152 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

26.2.2 PassByReference

C library function in clibrary.c:

void PassByReference(double *arg1, int *arg2)
{

strncpy(last_function_called, "PassByReference", MAXLAST);

*arg2 = *arg1;
}

clibrary.yaml:

- decl: void PassByReference(double *arg1+intent(in), int *arg2+intent(out))

Fortran calls C via the following interface:

interface
subroutine pass_by_reference(arg1, arg2) &

bind(C, name="PassByReference")
use iso_c_binding, only : C_DOUBLE, C_INT
implicit none
real(C_DOUBLE), intent(IN) :: arg1
integer(C_INT), intent(OUT) :: arg2

end subroutine pass_by_reference
end interface

Example usage:

integer(C_INT) var
call pass_by_reference(3.14d0, var)
call assert_equals(3, var)

26.2.3 Sum

C++ library function from pointers.cpp:

void Sum(int len, const int *values, int *result)
{

int sum = 0;
for (int i=0; i < len; i++) {

sum += values[i];
}

*result = sum;
return;

}

pointers.yaml:

- decl: void Sum(int len +implied(size(values)),
int *values +rank(1)+intent(in),
int *result +intent(out))

The POI prefix to the function names is derived from the format field C_prefix which defaults to the first three letters
of the library field, in this case pointers. This is a C++ file which provides a C API via extern "C".

wrappointers.cpp:

26.2. Numeric Types 153

shroud Documentation, Release 0.13.0

int POI_sumFixedArray(void)
{

// splicer begin function.sumFixedArray
int SHC_rv = sumFixedArray();
return SHC_rv;
// splicer end function.sumFixedArray

}

Fortran calls C via the following interface:

interface
subroutine c_sum(len, values, result) &

bind(C, name="POI_Sum")
use iso_c_binding, only : C_INT
implicit none
integer(C_INT), value, intent(IN) :: len
integer(C_INT), intent(IN) :: values(*)
integer(C_INT), intent(OUT) :: result

end subroutine c_sum
end interface

The Fortran wrapper:

interface
function sum_fixed_array() &

result(SHT_rv) &
bind(C, name="POI_sumFixedArray")

use iso_c_binding, only : C_INT
implicit none
integer(C_INT) :: SHT_rv

end function sum_fixed_array
end interface

Example usage:

integer(C_INT) rv_int
call sum([1,2,3,4,5], rv_int)
call assert_true(rv_int .eq. 15, "sum")

26.2.4 truncate_to_int

Sometimes it is more convenient to have the wrapper allocate an intent(out) array before passing it to the C++
function. This can be accomplished by adding the deref(allocatable) attribute.

C++ library function from pointers.c:

void truncate_to_int(double *in, int *out, int size)
{

int i;
for(i = 0; i < size; i++) {

out[i] = in[i];
}

}

pointers.yaml:

154 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

- decl: void truncate_to_int(double * in +intent(in) +rank(1),
int * out +intent(out)

+deref(allocatable)+dimension(size(in)),
int sizein +implied(size(in)))

Fortran calls C via the following interface:

interface
subroutine c_truncate_to_int(in, out, sizein) &

bind(C, name="truncate_to_int")
use iso_c_binding, only : C_DOUBLE, C_INT
implicit none
real(C_DOUBLE), intent(IN) :: in(*)
integer(C_INT), intent(OUT) :: out(*)
integer(C_INT), value, intent(IN) :: sizein

end subroutine c_truncate_to_int
end interface

The Fortran wrapper:

subroutine truncate_to_int(in, out)
use iso_c_binding, only : C_DOUBLE, C_INT
real(C_DOUBLE), intent(IN) :: in(:)
integer(C_INT), intent(OUT) :: out(:)
integer(C_INT) :: SH_sizein
! splicer begin function.truncate_to_int
SH_sizein = size(in,kind=C_INT)
call c_truncate_to_int(in, out, SH_sizein)
! splicer end function.truncate_to_int

end subroutine truncate_to_int

Example usage:

integer(c_int), allocatable :: out_int(:)
call truncate_to_int([1.2d0, 2.3d0, 3.4d0, 4.5d0], out_int)

26.3 Numeric Pointers

26.3.1 getRawPtrToFixedArray

C++ library function from pointers.c:

void getRawPtrToFixedArray(int **count)
{

*count = (int *) &global_fixed_array;
}

pointers.yaml:

- decl: void getRawPtrToFixedArray(int **count+intent(out)+deref(raw))

Fortran calls C via the following interface:

26.3. Numeric Pointers 155

shroud Documentation, Release 0.13.0

interface
subroutine get_raw_ptr_to_fixed_array(count) &

bind(C, name="getRawPtrToFixedArray")
use iso_c_binding, only : C_PTR
implicit none
type(C_PTR), intent(OUT) :: count

end subroutine get_raw_ptr_to_fixed_array
end interface

Example usage:

type(C_PTR) :: cptr_array
call get_raw_ptr_to_fixed_array(cptr_array)

26.3.2 getPtrToScalar

C++ library function from pointers.c:

void getPtrToScalar(int **nitems)
{

*nitems = &global_int;
}

pointers.yaml:

- decl: void getPtrToScalar(int **nitems+intent(out))

This is a C file which provides the bufferify function.

wrappointers.c:

void POI_getPtrToScalar_bufferify(POI_SHROUD_array *SHT_nitems_cdesc)
{

// splicer begin function.getPtrToScalar_bufferify
int *nitems;
getPtrToScalar(&nitems);
SHT_nitems_cdesc->cxx.addr = nitems;
SHT_nitems_cdesc->cxx.idtor = 0;
SHT_nitems_cdesc->addr.base = nitems;
SHT_nitems_cdesc->type = SH_TYPE_INT;
SHT_nitems_cdesc->elem_len = sizeof(int);
SHT_nitems_cdesc->rank = 0;
SHT_nitems_cdesc->size = 1;
// splicer end function.getPtrToScalar_bufferify

}

Fortran calls C via the following interface:

interface
subroutine c_get_ptr_to_scalar(nitems) &

bind(C, name="getPtrToScalar")
use iso_c_binding, only : C_PTR
implicit none
type(C_PTR), intent(OUT) :: nitems

end subroutine c_get_ptr_to_scalar
end interface

156 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

The Fortran wrapper:

subroutine get_ptr_to_scalar(nitems)
use iso_c_binding, only : C_INT, c_f_pointer
integer(C_INT), intent(OUT), pointer :: nitems
! splicer begin function.get_ptr_to_scalar
type(POI_SHROUD_array) :: SHT_nitems_cdesc
call c_get_ptr_to_scalar_bufferify(SHT_nitems_cdesc)
call c_f_pointer(SHT_nitems_cdesc%base_addr, nitems)
! splicer end function.get_ptr_to_scalar

end subroutine get_ptr_to_scalar

Assigning to iscalar will modify the C++ variable. Example usage:

integer(C_INT), pointer :: iscalar
call get_ptr_to_scalar(iscalar)
iscalar = 0

26.3.3 getPtrToDynamicArray

C++ library function from pointers.c:

void getPtrToDynamicArray(int **count, int *len)
{

*count = (int *) &global_fixed_array;

*len = sizeof(global_fixed_array)/sizeof(int);
}

pointers.yaml:

- decl: void getPtrToDynamicArray(int **count+intent(out)+dimension(ncount),
int *ncount+intent(out)+hidden)

This is a C file which provides the bufferify function.

wrappointers.c:

void POI_getPtrToDynamicArray_bufferify(
POI_SHROUD_array *SHT_count_cdesc)

{
// splicer begin function.getPtrToDynamicArray_bufferify
int *count;
int ncount;
getPtrToDynamicArray(&count, &ncount);
SHT_count_cdesc->cxx.addr = count;
SHT_count_cdesc->cxx.idtor = 0;
SHT_count_cdesc->addr.base = count;
SHT_count_cdesc->type = SH_TYPE_INT;
SHT_count_cdesc->elem_len = sizeof(int);
SHT_count_cdesc->rank = 1;
SHT_count_cdesc->shape[0] = ncount;
SHT_count_cdesc->size = SHT_count_cdesc->shape[0];
// splicer end function.getPtrToDynamicArray_bufferify

}

Fortran calls C via the following interface:

26.3. Numeric Pointers 157

shroud Documentation, Release 0.13.0

interface
subroutine c_get_ptr_to_dynamic_array(count, ncount) &

bind(C, name="getPtrToDynamicArray")
use iso_c_binding, only : C_INT, C_PTR
implicit none
type(C_PTR), intent(OUT) :: count
integer(C_INT), intent(OUT) :: ncount

end subroutine c_get_ptr_to_dynamic_array
end interface

The Fortran wrapper:

subroutine get_ptr_to_dynamic_array(count)
use iso_c_binding, only : C_INT, c_f_pointer
integer(C_INT), intent(OUT), pointer :: count(:)
! splicer begin function.get_ptr_to_dynamic_array
type(POI_SHROUD_array) :: SHT_count_cdesc
call c_get_ptr_to_dynamic_array_bufferify(SHT_count_cdesc)
call c_f_pointer(SHT_count_cdesc%base_addr, count, &

SHT_count_cdesc%shape(1:1))
! splicer end function.get_ptr_to_dynamic_array

end subroutine get_ptr_to_dynamic_array

Assigning to iarray will modify the C++ variable. Example usage:

integer(C_INT), pointer :: iarray(:)
call get_ptr_to_dynamic_array(iarray)
iarray = 0

26.3.4 getRawPtrToInt2d

global_int2d is a two dimensional array of non-contiguous rows. C stores the address of each row. Shroud can only
deal with this as a type(C_PTR) and expects the user to dereference the address.

C++ library function from pointers.c:

static int global_int2d_1[] = {1,2,3};
static int global_int2d_2[] = {4,5};
static int *global_int2d[] = {global_int2d_1, global_int2d_2};

void getRawPtrToInt2d(int ***arg)
{

*arg = (int **) global_int2d;
}

pointers.yaml:

- decl: void getRawPtrToInt2d(int ***arg +intent(out))

Fortran calls C via the following interface:

interface
subroutine get_raw_ptr_to_int2d(arg) &

bind(C, name="getRawPtrToInt2d")
use iso_c_binding, only : C_PTR
implicit none

(continues on next page)

158 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

(continued from previous page)

type(C_PTR), intent(OUT) :: arg
end subroutine get_raw_ptr_to_int2d

end interface

Example usage:

type(C_PTR) :: addr
type(C_PTR), pointer :: array2d(:)
integer(C_INT), pointer :: row1(:), row2(:)
integer total

call get_raw_ptr_to_int2d(addr)

! Dereference the pointers into two 1d arrays.
call c_f_pointer(addr, array2d, [2])
call c_f_pointer(array2d(1), row1, [3])
call c_f_pointer(array2d(2), row2, [2])

total = row1(1) + row1(2) + row1(3) + row2(1) + row2(2)
call assert_equals(15, total)

26.3.5 checkInt2d

Example of using the type(C_PTR) returned getRawPtrToInt2d.

pointers.yaml:

- decl: int checkInt2d(int **arg +intent(in))

Fortran calls C via the following interface. Note the use of VALUE attribute.

interface
function check_int2d(arg) &

result(SHT_rv) &
bind(C, name="checkInt2d")

use iso_c_binding, only : C_INT, C_PTR
implicit none
type(C_PTR), intent(IN), value :: arg
integer(C_INT) :: SHT_rv

end function check_int2d
end interface

Example usage:

type(C_PTR) :: addr
integer total

call get_raw_ptr_to_int2d(addr)
total = check_int2d(addr)
call assert_equals(15, total)

26.3. Numeric Pointers 159

shroud Documentation, Release 0.13.0

26.3.6 getMinMax

No Fortran function is created. Only an interface to a C wrapper which dereference the pointers so they can be treated
as references.

C++ library function in tutorial.cpp:

void getMinMax(int &min, int &max)
{

min = -1;
max = 100;

}

tutorial.yaml:

- decl: void getMinMax(int &min +intent(out), int &max +intent(out))

The C wrapper:

void TUT_getMinMax(int * min, int * max)
{

// splicer begin function.getMinMax
tutorial::getMinMax(*min, *max);
// splicer end function.getMinMax

}

Fortran calls C via the following interface:

interface
subroutine get_min_max(min, max) &

bind(C, name="TUT_getMinMax")
use iso_c_binding, only : C_INT
implicit none
integer(C_INT), intent(OUT) :: min
integer(C_INT), intent(OUT) :: max

end subroutine get_min_max
end interface

Fortran usage:

call get_min_max(minout, maxout)
call assert_equals(-1, minout, "get_min_max minout")
call assert_equals(100, maxout, "get_min_max maxout")

26.3.7 returnIntPtrToScalar

pointers.yaml:

- decl: int *returnIntPtrToScalar(void)

Fortran calls C via the following interface:

interface
function c_return_int_ptr_to_scalar() &

result(SHT_rv) &
bind(C, name="returnIntPtrToScalar")

(continues on next page)

160 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

(continued from previous page)

use iso_c_binding, only : C_PTR
implicit none
type(C_PTR) SHT_rv

end function c_return_int_ptr_to_scalar
end interface

The Fortran wrapper:

function return_int_ptr_to_scalar() &
result(SHT_rv)

use iso_c_binding, only : C_INT, C_PTR, c_f_pointer
integer(C_INT), pointer :: SHT_rv
! splicer begin function.return_int_ptr_to_scalar
type(C_PTR) :: SHC_rv_ptr
SHC_rv_ptr = c_return_int_ptr_to_scalar()
call c_f_pointer(SHC_rv_ptr, SHT_rv)
! splicer end function.return_int_ptr_to_scalar

end function return_int_ptr_to_scalar

Example usage:

integer(C_INT), pointer :: irvscalar
irvscalar => return_int_ptr_to_scalar()

26.3.8 returnIntPtrToFixedArray

pointers.yaml:

- decl: int *returnIntPtrToFixedArray(void) +dimension(10)

This is a C file which provides the bufferify function.

wrappointers.c:

void POI_returnIntPtrToFixedArray_bufferify(
POI_SHROUD_array *SHT_rv_cdesc)

{
// splicer begin function.returnIntPtrToFixedArray_bufferify
int * SHC_rv = returnIntPtrToFixedArray();
SHT_rv_cdesc->cxx.addr = SHC_rv;
SHT_rv_cdesc->cxx.idtor = 0;
SHT_rv_cdesc->addr.base = SHC_rv;
SHT_rv_cdesc->type = SH_TYPE_INT;
SHT_rv_cdesc->elem_len = sizeof(int);
SHT_rv_cdesc->rank = 1;
SHT_rv_cdesc->shape[0] = 10;
SHT_rv_cdesc->size = SHT_rv_cdesc->shape[0];
// splicer end function.returnIntPtrToFixedArray_bufferify

}

Fortran calls C via the following interface:

interface
subroutine c_return_int_ptr_to_fixed_array_bufferify(SHT_rv) &

bind(C, name="POI_returnIntPtrToFixedArray_bufferify")

(continues on next page)

26.3. Numeric Pointers 161

shroud Documentation, Release 0.13.0

(continued from previous page)

import :: POI_SHROUD_array
implicit none
type(POI_SHROUD_array), intent(OUT) :: SHT_rv

end subroutine c_return_int_ptr_to_fixed_array_bufferify
end interface

The Fortran wrapper:

function return_int_ptr_to_fixed_array() &
result(SHT_rv)

use iso_c_binding, only : C_INT, c_f_pointer
integer(C_INT), pointer :: SHT_rv(:)
! splicer begin function.return_int_ptr_to_fixed_array
type(POI_SHROUD_array) :: SHT_rv_cdesc
call c_return_int_ptr_to_fixed_array_bufferify(SHT_rv_cdesc)
call c_f_pointer(SHT_rv_cdesc%base_addr, SHT_rv, &

SHT_rv_cdesc%shape(1:1))
! splicer end function.return_int_ptr_to_fixed_array

end function return_int_ptr_to_fixed_array

Example usage:

integer(C_INT), pointer :: irvarray(:)
irvarray => return_int_ptr_to_fixed_array()

26.3.9 returnIntScalar

pointers.yaml:

- decl: int *returnIntScalar(void) +deref(scalar)

This is a C file which provides the bufferify function.

wrappointers.c:

int POI_returnIntScalar(void)
{

// splicer begin function.returnIntScalar
int * SHC_rv = returnIntScalar();
return *SHC_rv;
// splicer end function.returnIntScalar

}

Fortran calls C via the following interface:

interface
function return_int_scalar() &

result(SHT_rv) &
bind(C, name="POI_returnIntScalar")

use iso_c_binding, only : C_INT
implicit none
integer(C_INT) :: SHT_rv

end function return_int_scalar
end interface

Example usage:

162 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

integer :: ivalue
ivalue = return_int_scalar()

26.3.10 returnIntPtrDimPointer

Return a Fortran pointer to an array. The length of the array is returned from C++ in the len argument. This argument
sets the hidden attribute since it is not needed in the Fortran wrapper. It will be used in the c_f_pointer call to set
the length of the array.

The input is in file ownership.yaml.

- decl: int * ReturnIntPtrDimPointer(int *len+intent(out)+hidden)
fattrs:
deref: pointer
dimension: len

The C wrapper calls the C++ function from an extern C wrapper. In does not hide the len argument. This function
does not use the deref attribute.

int * OWN_ReturnIntPtrDimPointer(int * len)
{

// splicer begin function.ReturnIntPtrDimPointer
int * SHC_rv = ReturnIntPtrDimPointer(len);
return SHC_rv;
// splicer end function.ReturnIntPtrDimPointer

}

The bufferify function passes an argument to contain the meta data of the array. It is written to wrapownership.
cpp.

void OWN_ReturnIntPtrDimPointer_bufferify(
OWN_SHROUD_array *SHT_rv_cdesc)

{
// splicer begin function.ReturnIntPtrDimPointer_bufferify
int len;
int * SHC_rv = ReturnIntPtrDimPointer(&len);
SHT_rv_cdesc->cxx.addr = SHC_rv;
SHT_rv_cdesc->cxx.idtor = 0;
SHT_rv_cdesc->addr.base = SHC_rv;
SHT_rv_cdesc->type = SH_TYPE_INT;
SHT_rv_cdesc->elem_len = sizeof(int);
SHT_rv_cdesc->rank = 1;
SHT_rv_cdesc->shape[0] = len;
SHT_rv_cdesc->size = SHT_rv_cdesc->shape[0];
// splicer end function.ReturnIntPtrDimPointer_bufferify

}

Fortran calls the bufferify function in wrapfownership.f.

function return_int_ptr_dim_pointer() &
result(SHT_rv)

use iso_c_binding, only : C_INT, c_f_pointer
integer(C_INT), pointer :: SHT_rv(:)
! splicer begin function.return_int_ptr_dim_pointer
type(OWN_SHROUD_array) :: SHT_rv_cdesc

(continues on next page)

26.3. Numeric Pointers 163

shroud Documentation, Release 0.13.0

(continued from previous page)

call c_return_int_ptr_dim_pointer_bufferify(SHT_rv_cdesc)
call c_f_pointer(SHT_rv_cdesc%base_addr, SHT_rv, &

SHT_rv_cdesc%shape(1:1))
! splicer end function.return_int_ptr_dim_pointer

end function return_int_ptr_dim_pointer

Fortran usage:

integer(C_INT), pointer :: ivalue(:)
integer len

ivalue => return_int_ptr_dim_pointer()
len = size(ivalue)

26.3.11 returnIntPtrDimAlloc

Convert a pointer returned from C++ into a Fortran allocatable array. To do this, memory is allocated in Fortran then
the C++ values are copied into it. The advantage is that the user does not have to worry about releasing the C++
memory. The length of the array is returned from C++ in the len argument. This argument sets the hidden attribute
since it is not needed in the Fortran wrapper.

The input is in file ownership.yaml.

- decl: int * ReturnIntPtrDimAlloc(int *len+intent(out)+hidden)
fattrs:
deref: allocatable
dimension: len

The C wrapper calls the C++ function from an extern C wrapper. In does not hide the len argument. This function
does not use the deref attribute.

int * OWN_ReturnIntPtrDimAlloc(int * len)
{

// splicer begin function.ReturnIntPtrDimAlloc
int * SHC_rv = ReturnIntPtrDimAlloc(len);
return SHC_rv;
// splicer end function.ReturnIntPtrDimAlloc

}

The bufferify function passes an argument to contain the meta data of the array. It is written to wrapownership.
cpp.

void OWN_ReturnIntPtrDimAlloc_bufferify(OWN_SHROUD_array *SHT_rv_cdesc)
{

// splicer begin function.ReturnIntPtrDimAlloc_bufferify
int len;
int * SHC_rv = ReturnIntPtrDimAlloc(&len);
SHT_rv_cdesc->cxx.addr = SHC_rv;
SHT_rv_cdesc->cxx.idtor = 0;
SHT_rv_cdesc->addr.base = SHC_rv;
SHT_rv_cdesc->type = SH_TYPE_INT;
SHT_rv_cdesc->elem_len = sizeof(int);
SHT_rv_cdesc->rank = 1;
SHT_rv_cdesc->shape[0] = len;
SHT_rv_cdesc->size = SHT_rv_cdesc->shape[0];

(continues on next page)

164 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

(continued from previous page)

// splicer end function.ReturnIntPtrDimAlloc_bufferify
}

Fortran calls the bufferify function in wrapfownership.f.

function return_int_ptr_dim_alloc() &
result(SHT_rv)

use iso_c_binding, only : C_INT, C_LOC, C_SIZE_T
integer(C_INT), allocatable, target :: SHT_rv(:)
! splicer begin function.return_int_ptr_dim_alloc
type(OWN_SHROUD_array) :: SHT_rv_cdesc
call c_return_int_ptr_dim_alloc_bufferify(SHT_rv_cdesc)
allocate(SHT_rv(SHT_rv_cdesc%shape(1)))
call OWN_SHROUD_copy_array(SHT_rv_cdesc, C_LOC(SHT_rv), &

size(SHT_rv, kind=C_SIZE_T))
! splicer end function.return_int_ptr_dim_alloc

end function return_int_ptr_dim_alloc

Fortran usage:

integer(C_INT), allocatable :: ivalue(:)
integer len

ivalue = return_int_ptr_dim_alloc()
len = size(ivalue)

26.4 Bool

26.4.1 checkBool

Assignments are done in the Fortran wrapper to convert between logical and logical(C_BOOL).

C library function in clibrary:

void checkBool(const bool arg1, bool *arg2, bool *arg3)
{

strncpy(last_function_called, "checkBool", MAXLAST);

*arg2 = ! arg1;

*arg3 = ! *arg3;
return;

}

clibrary.yaml:

- decl: void checkBool(const bool arg1,
bool *arg2+intent(out),
bool *arg3+intent(inout))

Fortran calls C via the following interface:

interface
subroutine c_check_bool(arg1, arg2, arg3) &

bind(C, name="checkBool")
use iso_c_binding, only : C_BOOL

(continues on next page)

26.4. Bool 165

shroud Documentation, Release 0.13.0

(continued from previous page)

implicit none
logical(C_BOOL), value, intent(IN) :: arg1
logical(C_BOOL), intent(OUT) :: arg2
logical(C_BOOL), intent(INOUT) :: arg3

end subroutine c_check_bool
end interface

The Fortran wrapper:

subroutine check_bool(arg1, arg2, arg3)
use iso_c_binding, only : C_BOOL
logical, value, intent(IN) :: arg1
logical, intent(OUT) :: arg2
logical, intent(INOUT) :: arg3
! splicer begin function.check_bool
logical(C_BOOL) :: SHT_arg1_cxx
logical(C_BOOL) :: SHT_arg2_cxx
logical(C_BOOL) :: SHT_arg3_cxx
SHT_arg1_cxx = arg1 ! coerce to C_BOOL
SHT_arg3_cxx = arg3 ! coerce to C_BOOL
call c_check_bool(SHT_arg1_cxx, SHT_arg2_cxx, SHT_arg3_cxx)
arg2 = SHT_arg2_cxx ! coerce to logical
arg3 = SHT_arg3_cxx ! coerce to logical
! splicer end function.check_bool

end subroutine check_bool

Fortran usage:

logical rv_logical, wrk_logical
rv_logical = .true.
wrk_logical = .true.
call check_bool(.true., rv_logical, wrk_logical)
call assert_false(rv_logical)
call assert_false(wrk_logical)

26.5 Character

26.5.1 acceptName

Pass a NULL terminated string to a C function. The string will be unchanged.

C library function in clibrary.c:

void acceptName(const char *name)
{

strncpy(last_function_called, "acceptName", MAXLAST);
}

clibrary.yaml:

- decl: void acceptName(const char *name)

Fortran calls C via the following interface:

166 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

interface
subroutine c_accept_name(name) &

bind(C, name="acceptName")
use iso_c_binding, only : C_CHAR
implicit none
character(kind=C_CHAR), intent(IN) :: name(*)

end subroutine c_accept_name
end interface

The Fortran wrapper:

subroutine accept_name(name)
use iso_c_binding, only : C_NULL_CHAR
character(len=*), intent(IN) :: name
! splicer begin function.accept_name
call c_accept_name(trim(name)//C_NULL_CHAR)
! splicer end function.accept_name

end subroutine accept_name

No C wrapper is required since the Fortran wrapper creates a NULL terminated string by calling the Fortran intrinsic
function trim and concatenating C_NULL_CHAR (from iso_c_binding). This can be done since the argument
name is const which sets the attribute intent(in).

Fortran usage:

call accept_name("spot")

26.5.2 returnOneName

Pass the pointer to a buffer which the C library will fill. The length of the string is implicitly known by the library to
not exceed the library variable MAXNAME.

C library function in clibrary.c:

void returnOneName(char *name1)
{

strcpy(name1, "bill");
}

clibrary.yaml:

- decl: void returnOneName(char *name1+intent(out)+charlen(MAXNAME))

The C wrapper:

void CLI_returnOneName_bufferify(char *name1, int SHT_name1_len)
{

// splicer begin function.returnOneName_bufferify
returnOneName(name1);
ShroudStrBlankFill(name1, SHT_name1_len);
// splicer end function.returnOneName_bufferify

}

Fortran calls C via the following interface:

26.5. Character 167

shroud Documentation, Release 0.13.0

interface
subroutine c_return_one_name_bufferify(name1, SHT_name1_len) &

bind(C, name="CLI_returnOneName_bufferify")
use iso_c_binding, only : C_CHAR, C_INT
implicit none
character(kind=C_CHAR), intent(OUT) :: name1(*)
integer(C_INT), value, intent(IN) :: SHT_name1_len

end subroutine c_return_one_name_bufferify
end interface

The Fortran wrapper:

subroutine return_one_name(name1)
use iso_c_binding, only : C_INT
character(len=*), intent(OUT) :: name1
! splicer begin function.return_one_name
integer(C_INT) SHT_name1_len
SHT_name1_len = len(name1, kind=C_INT)
call c_return_one_name_bufferify(name1, SHT_name1_len)
! splicer end function.return_one_name

end subroutine return_one_name

Fortran usage:

name1 = " "
call return_one_name(name1)
call assert_equals("bill", name1)

26.5.3 passCharPtr

The function passCharPtr(dest, src) is equivalent to the Fortran statement dest = src:

C++ library function in strings.cpp:

void passCharPtr(char *dest, const char *src)
{

std::strcpy(dest, src);
}

strings.yaml:

- decl: void passCharPtr(char * dest+intent(out)+charlen(40),
const char *src)

The intent of dest must be explicit. It defaults to intent(inout) since it is a pointer. src is implied to be intent(in)
since it is const. This single line will create five different wrappers.

The native C version. The only feature this provides to Fortran is the ability to call a C++ function by wrapping it in
an extern "C" function. The user is responsible for providing the NULL termination. The result in str will also
be NULL terminated instead of blank filled.:

void STR_passCharPtr(char * dest, const char * src)
{

// splicer begin function.passCharPtr
passCharPtr(dest, src);

(continues on next page)

168 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

(continued from previous page)

// splicer end function.passCharPtr
}

The C wrapper:

void STR_passCharPtr_bufferify(char *dest, int SHT_dest_len,
const char * src)

{
// splicer begin function.passCharPtr_bufferify
passCharPtr(dest, src);
ShroudStrBlankFill(dest, SHT_dest_len);
// splicer end function.passCharPtr_bufferify

}

Fortran calls C via the following interface:

interface
subroutine c_pass_char_ptr(dest, src) &

bind(C, name="STR_passCharPtr")
use iso_c_binding, only : C_CHAR
implicit none
character(kind=C_CHAR), intent(OUT) :: dest(*)
character(kind=C_CHAR), intent(IN) :: src(*)

end subroutine c_pass_char_ptr
end interface

interface
subroutine c_pass_char_ptr_bufferify(dest, SHT_dest_len, src) &

bind(C, name="STR_passCharPtr_bufferify")
use iso_c_binding, only : C_CHAR, C_INT
implicit none
character(kind=C_CHAR), intent(OUT) :: dest(*)
integer(C_INT), value, intent(IN) :: SHT_dest_len
character(kind=C_CHAR), intent(IN) :: src(*)

end subroutine c_pass_char_ptr_bufferify
end interface

The Fortran wrapper:

subroutine pass_char_ptr(dest, src)
use iso_c_binding, only : C_INT, C_NULL_CHAR
character(len=*), intent(OUT) :: dest
character(len=*), intent(IN) :: src
! splicer begin function.pass_char_ptr
integer(C_INT) SHT_dest_len
SHT_dest_len = len(dest, kind=C_INT)
call c_pass_char_ptr_bufferify(dest, SHT_dest_len, &

trim(src)//C_NULL_CHAR)
! splicer end function.pass_char_ptr

end subroutine pass_char_ptr

The function can be called without the user aware that it is written in C++:

character(30) str
call pass_char_ptr(dest=str, src="mouse")

26.5. Character 169

shroud Documentation, Release 0.13.0

26.5.4 ImpliedTextLen

Pass the pointer to a buffer which the C library will fill. The length of the buffer is passed in ltext. Since Fortran
knows the length of CHARACTER variable, the Fortran wrapper does not need to be explicitly told the length of the
variable. Instead its value can be defined with the implied attribute.

This can be used to emulate the behavior of most Fortran compilers which will pass an additional, hidden argument
which contains the length of a CHARACTER argument.

C library function in clibrary.c:

void ImpliedTextLen(char *text, int ltext)
{

strncpy(text, "ImpliedTextLen", ltext);
strncpy(last_function_called, "ImpliedTextLen", MAXLAST);

}

clibrary.yaml:

- decl: void ImpliedTextLen(char *text+intent(out)+charlen(MAXNAME),
int ltext+implied(len(text)))

The C wrapper:

void CLI_ImpliedTextLen_bufferify(char *text, int SHT_text_len,
int ltext)

{
// splicer begin function.ImpliedTextLen_bufferify
ImpliedTextLen(text, ltext);
ShroudStrBlankFill(text, SHT_text_len);
// splicer end function.ImpliedTextLen_bufferify

}

Fortran calls C via the following interface:

interface
subroutine c_implied_text_len_bufferify(text, SHT_text_len, &

ltext) &
bind(C, name="CLI_ImpliedTextLen_bufferify")

use iso_c_binding, only : C_CHAR, C_INT
implicit none
character(kind=C_CHAR), intent(OUT) :: text(*)
integer(C_INT), value, intent(IN) :: SHT_text_len
integer(C_INT), value, intent(IN) :: ltext

end subroutine c_implied_text_len_bufferify
end interface

The Fortran wrapper:

subroutine implied_text_len(text)
use iso_c_binding, only : C_INT
character(len=*), intent(OUT) :: text
integer(C_INT) :: SH_ltext
! splicer begin function.implied_text_len
integer(C_INT) SHT_text_len
SHT_text_len = len(text, kind=C_INT)
SH_ltext = len(text,kind=C_INT)
call c_implied_text_len_bufferify(text, SHT_text_len, SH_ltext)

(continues on next page)

170 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

(continued from previous page)

! splicer end function.implied_text_len
end subroutine implied_text_len

Fortran usage:

character(MAXNAME) name1
call implied_text_len(name1)
call assert_equals("ImpliedTextLen", name1)

26.5.5 acceptCharArrayIn

Arguments of type char ** are assumed to be a list of NULL terminated strings. In Fortran this pattern would be an
array of CHARACTER where all strings are the same length. The Fortran variable is converted into the the C version
by copying the data then releasing it at the end of the wrapper.

pointers.yaml:

- decl: void acceptCharArrayIn(char **names +intent(in))

This is a C file which provides the bufferify function.

wrappointers.c:

int POI_acceptCharArrayIn_bufferify(const char *names,
size_t SHT_names_size, int SHT_names_len)

{
// splicer begin function.acceptCharArrayIn_bufferify
char **SHCXX_names = ShroudStrArrayAlloc(names, SHT_names_size,

SHT_names_len);
int SHC_rv = acceptCharArrayIn(SHCXX_names);
ShroudStrArrayFree(SHCXX_names, SHT_names_size);
return SHC_rv;
// splicer end function.acceptCharArrayIn_bufferify

}

Most of the work is done by the helper function. This converts the Fortran array into NULL terminated strings by
copying all of the values:

// helper ShroudStrArrayAlloc
// Copy src into new memory and null terminate.
static char **ShroudStrArrayAlloc(const char *src, int nsrc, int len)
{

char **rv = malloc(sizeof(char *) * nsrc);
const char *src0 = src;
for(int i=0; i < nsrc; ++i) {

int ntrim = ShroudLenTrim(src0, len);
char *tgt = malloc(ntrim+1);
memcpy(tgt, src0, ntrim);
tgt[ntrim] = '\0';
rv[i] = tgt;
src0 += len;

}
return rv;

}

26.5. Character 171

shroud Documentation, Release 0.13.0

Fortran calls C via the following interface:

interface
function c_accept_char_array_in(names) &

result(SHT_rv) &
bind(C, name="acceptCharArrayIn")

use iso_c_binding, only : C_INT, C_PTR
implicit none
type(C_PTR), intent(IN) :: names(*)
integer(C_INT) :: SHT_rv

end function c_accept_char_array_in
end interface

The Fortran wrapper:

function accept_char_array_in(names) &
result(SHT_rv)

use iso_c_binding, only : C_INT, C_SIZE_T
character(len=*), intent(IN) :: names(:)
integer(C_INT) :: SHT_rv
! splicer begin function.accept_char_array_in
SHT_rv = c_accept_char_array_in_bufferify(names, &

size(names, kind=C_SIZE_T), len(names, kind=C_INT))
! splicer end function.accept_char_array_in

end function accept_char_array_in

Example usage:

character(10) :: in(3) = [&
"dog ", &
"cat ", &
"monkey " &
]

call accept_char_array_in(in)

26.6 std::string

26.6.1 acceptStringReference

C++ library function in strings.c:

void acceptStringReference(std::string & arg1)
{

arg1.append("dog");
}

strings.yaml:

- decl: void acceptStringReference(std::string & arg1)

A reference defaults to intent(inout) and will add both the len and len_trim annotations.

Both generated functions will convert arg into a std::string, call the function, then copy the results back into
the argument.

Which will call the C wrapper:

172 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

void STR_acceptStringReference(char * arg1)
{

// splicer begin function.acceptStringReference
std::string SHCXX_arg1(arg1);
acceptStringReference(SHCXX_arg1);
strcpy(arg1, SHCXX_arg1.c_str());
// splicer end function.acceptStringReference

}

The C wrapper:

void STR_acceptStringReference_bufferify(char *arg1, int SHT_arg1_len)
{

// splicer begin function.acceptStringReference_bufferify
std::string SHCXX_arg1(arg1, ShroudLenTrim(arg1, SHT_arg1_len));
acceptStringReference(SHCXX_arg1);
ShroudStrCopy(arg1, SHT_arg1_len, SHCXX_arg1.data(),

SHCXX_arg1.size());
// splicer end function.acceptStringReference_bufferify

}

An interface for the native C function is also created:

interface
subroutine c_accept_string_reference(arg1) &

bind(C, name="STR_acceptStringReference")
use iso_c_binding, only : C_CHAR
implicit none
character(kind=C_CHAR), intent(INOUT) :: arg1(*)

end subroutine c_accept_string_reference
end interface

Fortran calls C via the following interface:

interface
subroutine c_accept_string_reference_bufferify(arg1, &

SHT_arg1_len) &
bind(C, name="STR_acceptStringReference_bufferify")

use iso_c_binding, only : C_CHAR, C_INT
implicit none
character(kind=C_CHAR), intent(INOUT) :: arg1(*)
integer(C_INT), value, intent(IN) :: SHT_arg1_len

end subroutine c_accept_string_reference_bufferify
end interface

The Fortran wrapper:

subroutine accept_string_reference(arg1)
use iso_c_binding, only : C_INT
character(len=*), intent(INOUT) :: arg1
! splicer begin function.accept_string_reference
integer(C_INT) SHT_arg1_len
SHT_arg1_len = len(arg1, kind=C_INT)
call c_accept_string_reference_bufferify(arg1, SHT_arg1_len)
! splicer end function.accept_string_reference

end subroutine accept_string_reference

The important thing to notice is that the pure C version could do very bad things since it does not know how much

26.6. std::string 173

shroud Documentation, Release 0.13.0

space it has to copy into. The bufferify version knows the allocated length of the argument. However, since the input
argument is a fixed length it may be too short for the new string value:

Fortran usage:

character(30) str
str = "cat"
call accept_string_reference(str)
call assert_true(str == "catdog")

26.7 char functions

26.7.1 getCharPtr1

Return a pointer and convert into an ALLOCATABLE CHARACTER variable. The Fortran application is responsible to
release the memory. However, this may be done automatically by the Fortran runtime.

C++ library function in strings.cpp:

const char * getCharPtr1()
{

return static_char;
}

strings.yaml:

- decl: const char * getCharPtr1()

The C wrapper copies all of the metadata into a SHROUD_array struct which is used by the Fortran wrapper:

void STR_getCharPtr1_bufferify(STR_SHROUD_array *SHT_rv_cdesc)
{

// splicer begin function.getCharPtr1_bufferify
const char * SHC_rv = getCharPtr1();
SHT_rv_cdesc->cxx.addr = const_cast<char *>(SHC_rv);
SHT_rv_cdesc->cxx.idtor = 0;
SHT_rv_cdesc->addr.ccharp = SHC_rv;
SHT_rv_cdesc->type = SH_TYPE_OTHER;
SHT_rv_cdesc->elem_len = SHC_rv == nullptr ? 0 : std::strlen(SHC_rv);
SHT_rv_cdesc->size = 1;
SHT_rv_cdesc->rank = 0;
// splicer end function.getCharPtr1_bufferify

}

Fortran calls C via the following interface:

interface
subroutine c_get_char_ptr1_bufferify(SHT_rv) &

bind(C, name="STR_getCharPtr1_bufferify")
import :: STR_SHROUD_array
implicit none
type(STR_SHROUD_array), intent(OUT) :: SHT_rv

end subroutine c_get_char_ptr1_bufferify
end interface

174 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

The Fortran wrapper uses the metadata in DSHF_rv to allocate a CHARACTER variable of the correct length. The
helper function SHROUD_copy_string_and_free will copy the results of the C++ function into the return vari-
able:

function get_char_ptr1() &
result(SHT_rv)

character(len=:), allocatable :: SHT_rv
! splicer begin function.get_char_ptr1
type(STR_SHROUD_array) :: SHT_rv_cdesc
call c_get_char_ptr1_bufferify(SHT_rv_cdesc)
allocate(character(len=SHT_rv_cdesc%elem_len):: SHT_rv)
call STR_SHROUD_copy_string_and_free(SHT_rv_cdesc, SHT_rv, &

SHT_rv_cdesc%elem_len)
! splicer end function.get_char_ptr1

end function get_char_ptr1

Fortran usage:

character(len=:), allocatable :: str
str = get_char_ptr1()

26.7.2 getCharPtr2

If you know the maximum size of string that you expect the function to return, then the len attribute is used to declare
the length. The explicit ALLOCATE is avoided but any result which is longer than the length will be silently truncated.

C++ library function in strings.cpp:

const char * getCharPtr2()
{

return static_char;
}

strings.yaml:

- decl: const char * getCharPtr2() +len(30)

The C wrapper:

void STR_getCharPtr2_bufferify(char *SHC_rv, int SHT_rv_len)
{

// splicer begin function.getCharPtr2_bufferify
const char * SHCXX_rv = getCharPtr2();
ShroudStrCopy(SHC_rv, SHT_rv_len, SHCXX_rv, -1);
// splicer end function.getCharPtr2_bufferify

}

Fortran calls C via the following interface:

interface
subroutine c_get_char_ptr2_bufferify(SHT_rv, SHT_rv_len) &

bind(C, name="STR_getCharPtr2_bufferify")
use iso_c_binding, only : C_CHAR, C_INT
implicit none
character(kind=C_CHAR), intent(OUT) :: SHT_rv(*)
integer(C_INT), value, intent(IN) :: SHT_rv_len

(continues on next page)

26.7. char functions 175

shroud Documentation, Release 0.13.0

(continued from previous page)

end subroutine c_get_char_ptr2_bufferify
end interface

The Fortran wrapper:

function get_char_ptr2() &
result(SHT_rv)

use iso_c_binding, only : C_INT
character(len=30) :: SHT_rv
! splicer begin function.get_char_ptr2
integer(C_INT) SHT_rv_len
SHT_rv_len = len(SHT_rv, kind=C_INT)
call c_get_char_ptr2_bufferify(SHT_rv, SHT_rv_len)
! splicer end function.get_char_ptr2

end function get_char_ptr2

Fortran usage:

character(30) str
str = get_char_ptr2()

26.7.3 getCharPtr3

Create a Fortran subroutine with an additional CHARACTER argument for the C function result. Any size char-
acter string can be returned limited by the size of the Fortran argument. The argument is defined by the
F_string_result_as_arg format string.

C++ library function in strings.cpp:

const char * getCharPtr3()
{

return static_char;
}

strings.yaml:

- decl: const char * getCharPtr3()
format:
F_string_result_as_arg: output

The C wrapper:

void STR_getCharPtr3_bufferify(char *output, int noutput)
{

// splicer begin function.getCharPtr3_bufferify
const char * SHC_rv = getCharPtr3();
ShroudStrCopy(output, noutput, SHC_rv, -1);
// splicer end function.getCharPtr3_bufferify

}

Fortran calls C via the following interface:

interface
subroutine c_get_char_ptr3_bufferify(output, noutput) &

bind(C, name="STR_getCharPtr3_bufferify")

(continues on next page)

176 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

(continued from previous page)

use iso_c_binding, only : C_CHAR, C_INT
implicit none
character(kind=C_CHAR), intent(OUT) :: output(*)
integer(C_INT), value, intent(IN) :: noutput

end subroutine c_get_char_ptr3_bufferify
end interface

The Fortran wrapper:

subroutine get_char_ptr3(output)
character(*), intent(OUT) :: output
! splicer begin function.get_char_ptr3
integer(C_INT) SHT_rv_len
SHT_rv_len = len(output, kind=C_INT)
call c_get_char_ptr3_bufferify(output, SHT_rv_len)
! splicer end function.get_char_ptr3

end subroutine get_char_ptr3

Fortran usage:

character(30) str
call get_char_ptrs(str)

26.8 string functions

26.8.1 getConstStringRefPure

C++ library function in strings.cpp:

const std::string& getConstStringRefPure()
{

return static_str;
}

strings.yaml:

- decl: const string& getConstStringRefPure()

The C wrapper:

void STR_getConstStringRefPure_bufferify(STR_SHROUD_array *SHT_rv_cdesc)
{

// splicer begin function.getConstStringRefPure_bufferify
const std::string & SHCXX_rv = getConstStringRefPure();
ShroudStrToArray(SHT_rv_cdesc, &SHCXX_rv, 0);
// splicer end function.getConstStringRefPure_bufferify

}

The native C wrapper:

const char * STR_getConstStringRefPure(void)
{

// splicer begin function.getConstStringRefPure

(continues on next page)

26.8. string functions 177

shroud Documentation, Release 0.13.0

(continued from previous page)

const std::string & SHCXX_rv = getConstStringRefPure();
const char * SHC_rv = SHCXX_rv.c_str();
return SHC_rv;
// splicer end function.getConstStringRefPure

}

Fortran calls C via the following interface:

interface
subroutine c_get_const_string_ref_pure_bufferify(SHT_rv) &

bind(C, name="STR_getConstStringRefPure_bufferify")
import :: STR_SHROUD_array
implicit none
type(STR_SHROUD_array), intent(OUT) :: SHT_rv

end subroutine c_get_const_string_ref_pure_bufferify
end interface

The Fortran wrapper:

function get_const_string_ref_pure() &
result(SHT_rv)

character(len=:), allocatable :: SHT_rv
! splicer begin function.get_const_string_ref_pure
type(STR_SHROUD_array) :: SHT_rv_cdesc
call c_get_const_string_ref_pure_bufferify(SHT_rv_cdesc)
allocate(character(len=SHT_rv_cdesc%elem_len):: SHT_rv)
call STR_SHROUD_copy_string_and_free(SHT_rv_cdesc, SHT_rv, &

SHT_rv_cdesc%elem_len)
! splicer end function.get_const_string_ref_pure

end function get_const_string_ref_pure

Fortran usage:

str = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
str = get_const_string_ref_pure()
call assert_true(str == static_str, "getConstStringRefPure")

26.9 std::vector

26.9.1 vector_sum

C++ library function in vectors.cpp:

int vector_sum(const std::vector<int> &arg)
{

int sum = 0;
for(std::vector<int>::const_iterator it = arg.begin(); it != arg.end(); ++it) {
sum += *it;

}
return sum;

}

vectors.yaml:

178 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

- decl: int vector_sum(const std::vector<int> &arg)

intent(in) is implied for the vector_sum argument since it is const. The Fortran wrapper passes the array and
the size to C.

The C wrapper:

int VEC_vector_sum_bufferify(int *arg, size_t SHT_arg_size)
{

// splicer begin function.vector_sum_bufferify
const std::vector<int> SHCXX_arg(arg, arg + SHT_arg_size);
int SHC_rv = vector_sum(SHCXX_arg);
return SHC_rv;
// splicer end function.vector_sum_bufferify

}

Fortran calls C via the following interface:

interface
function c_vector_sum_bufferify(arg, SHT_arg_size) &

result(SHT_rv) &
bind(C, name="VEC_vector_sum_bufferify")

use iso_c_binding, only : C_INT, C_SIZE_T
implicit none
integer(C_INT), intent(IN) :: arg(*)
integer(C_SIZE_T), intent(IN), value :: SHT_arg_size
integer(C_INT) :: SHT_rv

end function c_vector_sum_bufferify
end interface

The Fortran wrapper:

function vector_sum(arg) &
result(SHT_rv)

use iso_c_binding, only : C_INT, C_SIZE_T
integer(C_INT), intent(IN) :: arg(:)
integer(C_INT) :: SHT_rv
! splicer begin function.vector_sum
SHT_rv = c_vector_sum_bufferify(arg, size(arg, kind=C_SIZE_T))
! splicer end function.vector_sum

end function vector_sum

Fortran usage:

integer(C_INT) intv(5)
intv = [1,2,3,4,5]
irv = vector_sum(intv)
call assert_true(irv .eq. 15)

26.9.2 vector_iota_out

C++ library function in vectors.cpp accepts an empty vector then fills in some values. In this example, a Fortran
array is passed in and will be filled.

void vector_iota_out(std::vector<int> &arg)
{

(continues on next page)

26.9. std::vector 179

shroud Documentation, Release 0.13.0

(continued from previous page)

for(unsigned int i=0; i < 5; i++) {
arg.push_back(i + 1);

}
return;

}

vectors.yaml:

- decl: void vector_iota_out(std::vector<int> &arg+intent(out))

The C wrapper allocates a new std::vector instance which will be returned to the Fortran wrapper. Variable
Darg will be filled with the meta data for the std::vector in a form that allows Fortran to access it. The value of
Darg->cxx.idtor is computed by Shroud and used to release the memory (index of destructor).

void VEC_vector_iota_out_bufferify(VEC_SHROUD_array *SHT_arg_cdesc)
{

// splicer begin function.vector_iota_out_bufferify
std::vector<int> *SHCXX_arg = new std::vector<int>;
vector_iota_out(*SHCXX_arg);
SHT_arg_cdesc->cxx.addr = SHCXX_arg;
SHT_arg_cdesc->cxx.idtor = 1;
SHT_arg_cdesc->addr.base = SHCXX_arg->empty() ? nullptr : &SHCXX_arg->front();
SHT_arg_cdesc->type = SH_TYPE_INT;
SHT_arg_cdesc->elem_len = sizeof(int);
SHT_arg_cdesc->size = SHCXX_arg->size();
SHT_arg_cdesc->rank = 1;
SHT_arg_cdesc->shape[0] = SHT_arg_cdesc->size;
// splicer end function.vector_iota_out_bufferify

}

Fortran calls C via the following interface:

interface
subroutine c_vector_iota_out_bufferify(SHT_arg_cdesc) &

bind(C, name="VEC_vector_iota_out_bufferify")
import :: VEC_SHROUD_array
implicit none
type(VEC_SHROUD_array), intent(OUT) :: SHT_arg_cdesc

end subroutine c_vector_iota_out_bufferify
end interface

The Fortran wrapper passes a SHROUD_array instance which will be filled by the C wrapper.

subroutine vector_iota_out(arg)
use iso_c_binding, only : C_INT, C_LOC, C_SIZE_T
integer(C_INT), intent(OUT), target :: arg(:)
! splicer begin function.vector_iota_out
type(VEC_SHROUD_array) :: SHT_arg_cdesc
call c_vector_iota_out_bufferify(SHT_arg_cdesc)
call VEC_SHROUD_copy_array(SHT_arg_cdesc, C_LOC(arg), &

size(arg,kind=C_SIZE_T))
! splicer end function.vector_iota_out

end subroutine vector_iota_out

Function SHROUD_copy_array_int copies the values into the user’s argument. If the argument is too short, not
all values returned by the library function will be copied.

180 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

// helper copy_array
// Copy std::vector into array c_var(c_var_size).
// Then release std::vector.
// Called from Fortran.
void VEC_ShroudCopyArray(VEC_SHROUD_array *data, void *c_var,

size_t c_var_size)
{

const void *cxx_var = data->addr.base;
int n = c_var_size < data->size ? c_var_size : data->size;
n *= data->elem_len;
std::memcpy(c_var, cxx_var, n);
VEC_SHROUD_memory_destructor(&data->cxx); // delete data->cxx.addr

}

Finally, the std::vector is released based on the value of idtor:

// Release library allocated memory.
void VEC_SHROUD_memory_destructor(VEC_SHROUD_capsule_data *cap)
{

void *ptr = cap->addr;
switch (cap->idtor) {
case 0: // --none--
{

// Nothing to delete
break;

}
case 1: // std_vector_int
{

std::vector<int> *cxx_ptr =
reinterpret_cast<std::vector<int> *>(ptr);

delete cxx_ptr;
break;

}
case 2: // std_vector_double
{

std::vector<double> *cxx_ptr =
reinterpret_cast<std::vector<double> *>(ptr);

delete cxx_ptr;
break;

}
default:
{

// Unexpected case in destructor
break;

}
}
cap->addr = nullptr;
cap->idtor = 0; // avoid deleting again

}

Fortran usage:

integer(C_INT) intv(5)
intv(:) = 0
call vector_iota_out(intv)
call assert_true(all(intv(:) .eq. [1,2,3,4,5]))

26.9. std::vector 181

shroud Documentation, Release 0.13.0

26.9.3 vector_iota_out_alloc

C++ library function in vectors.cpp accepts an empty vector then fills in some values. In this example, the Fortran
argument is ALLOCATABLE and will be sized based on the output of the library function.

void vector_iota_out_alloc(std::vector<int> &arg)
{

for(unsigned int i=0; i < 5; i++) {
arg.push_back(i + 1);

}
return;

}

The attribute +deref(allocatable) will cause the argument to be an ALLOCATABLE array.

vectors.yaml:

- decl: void vector_iota_out_alloc(std::vector<int> &
→˓arg+intent(out)+deref(allocatable))

The C wrapper:

void VEC_vector_iota_out_alloc_bufferify(
VEC_SHROUD_array *SHT_arg_cdesc)

{
// splicer begin function.vector_iota_out_alloc_bufferify
std::vector<int> *SHCXX_arg = new std::vector<int>;
vector_iota_out_alloc(*SHCXX_arg);
SHT_arg_cdesc->cxx.addr = SHCXX_arg;
SHT_arg_cdesc->cxx.idtor = 1;
SHT_arg_cdesc->addr.base = SHCXX_arg->empty() ? nullptr : &SHCXX_arg->front();
SHT_arg_cdesc->type = SH_TYPE_INT;
SHT_arg_cdesc->elem_len = sizeof(int);
SHT_arg_cdesc->size = SHCXX_arg->size();
SHT_arg_cdesc->rank = 1;
SHT_arg_cdesc->shape[0] = SHT_arg_cdesc->size;
// splicer end function.vector_iota_out_alloc_bufferify

}

Fortran calls C via the following interface:

interface
subroutine c_vector_iota_out_alloc_bufferify(SHT_arg_cdesc) &

bind(C, name="VEC_vector_iota_out_alloc_bufferify")
import :: VEC_SHROUD_array
implicit none
type(VEC_SHROUD_array), intent(OUT) :: SHT_arg_cdesc

end subroutine c_vector_iota_out_alloc_bufferify
end interface

The Fortran wrapper passes a SHROUD_array instance which will be filled by the C wrapper. After the function
returns, the allocate statement allocates an array of the proper length.

subroutine vector_iota_out_alloc(arg)
use iso_c_binding, only : C_INT, C_LOC, C_SIZE_T
integer(C_INT), intent(OUT), allocatable, target :: arg(:)
! splicer begin function.vector_iota_out_alloc
type(VEC_SHROUD_array) :: SHT_arg_cdesc

(continues on next page)

182 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

(continued from previous page)

call c_vector_iota_out_alloc_bufferify(SHT_arg_cdesc)
allocate(arg(SHT_arg_cdesc%size))
call VEC_SHROUD_copy_array(SHT_arg_cdesc, C_LOC(arg), &

size(arg,kind=C_SIZE_T))
! splicer end function.vector_iota_out_alloc

end subroutine vector_iota_out_alloc

inta is intent(out), so it will be deallocated upon entry to vector_iota_out_alloc.

Fortran usage:

integer(C_INT), allocatable :: inta(:)
call vector_iota_out_alloc(inta)
call assert_true(allocated(inta))
call assert_equals(5 , size(inta))
call assert_true(all(inta == [1,2,3,4,5]), &

"vector_iota_out_alloc value")

26.9.4 vector_iota_inout_alloc

C++ library function in vectors.cpp:

void vector_iota_inout_alloc(std::vector<int> &arg)
{

for(unsigned int i=0; i < 5; i++) {
arg.push_back(i + 11);

}
return;

}

vectors.yaml:

- decl: void vector_iota_out_alloc(std::vector<int> &
→˓arg+intent(inout)+deref(allocatable))

The C wrapper creates a new std::vector and initializes it to the Fortran argument.

void VEC_vector_iota_inout_alloc_bufferify(int *arg,
size_t SHT_arg_size, VEC_SHROUD_array *SHT_arg_cdesc)

{
// splicer begin function.vector_iota_inout_alloc_bufferify
std::vector<int> *SHCXX_arg = new std::vector<int>(

arg, arg + SHT_arg_size);
vector_iota_inout_alloc(*SHCXX_arg);
SHT_arg_cdesc->cxx.addr = SHCXX_arg;
SHT_arg_cdesc->cxx.idtor = 1;
SHT_arg_cdesc->addr.base = SHCXX_arg->empty() ? nullptr : &SHCXX_arg->front();
SHT_arg_cdesc->type = SH_TYPE_INT;
SHT_arg_cdesc->elem_len = sizeof(int);
SHT_arg_cdesc->size = SHCXX_arg->size();
SHT_arg_cdesc->rank = 1;
SHT_arg_cdesc->shape[0] = SHT_arg_cdesc->size;
// splicer end function.vector_iota_inout_alloc_bufferify

}

Fortran calls C via the following interface:

26.9. std::vector 183

shroud Documentation, Release 0.13.0

interface
subroutine c_vector_iota_inout_alloc_bufferify(arg, &

SHT_arg_size, SHT_arg_cdesc) &
bind(C, name="VEC_vector_iota_inout_alloc_bufferify")

use iso_c_binding, only : C_INT, C_SIZE_T
import :: VEC_SHROUD_array
implicit none
integer(C_INT), intent(IN) :: arg(*)
integer(C_SIZE_T), intent(IN), value :: SHT_arg_size
type(VEC_SHROUD_array), intent(OUT) :: SHT_arg_cdesc

end subroutine c_vector_iota_inout_alloc_bufferify
end interface

The Fortran wrapper will deallocate the argument after returning since it is intent(inout). The in values are now stored
in the std::vector. A new array is allocated to the current size of the std::vector. Fortran has no reallocate
statement. Finally, the new values are copied into the Fortran array and the std::vector is released.

subroutine vector_iota_inout_alloc(arg)
use iso_c_binding, only : C_INT, C_LOC, C_SIZE_T
integer(C_INT), intent(INOUT), allocatable, target :: arg(:)
! splicer begin function.vector_iota_inout_alloc
type(VEC_SHROUD_array) :: SHT_arg_cdesc
call c_vector_iota_inout_alloc_bufferify(arg, &

size(arg, kind=C_SIZE_T), SHT_arg_cdesc)
if (allocated(arg)) deallocate(arg)
allocate(arg(SHT_arg_cdesc%size))
call VEC_SHROUD_copy_array(SHT_arg_cdesc, C_LOC(arg), &

size(arg,kind=C_SIZE_T))
! splicer end function.vector_iota_inout_alloc

end subroutine vector_iota_inout_alloc

inta is intent(inout), so it will NOT be deallocated upon entry to vector_iota_inout_alloc. Fortran
usage:

call vector_iota_inout_alloc(inta)
call assert_true(allocated(inta))
call assert_equals(10 , size(inta))
call assert_true(all(inta == [1,2,3,4,5,11,12,13,14,15]), &

"vector_iota_inout_alloc value")
deallocate(inta)

26.10 Void Pointers

26.10.1 passAssumedType

C library function in clibrary.c:

int passAssumedType(void *arg)
{

strncpy(last_function_called, "passAssumedType", MAXLAST);
return *(int *) arg;

}

clibrary.yaml:

184 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

- decl: int passAssumedType(void *arg+assumedtype)

Fortran calls C via the following interface:

interface
function pass_assumed_type(arg) &

result(SHT_rv) &
bind(C, name="passAssumedType")

use iso_c_binding, only : C_INT
implicit none
type(*) :: arg
integer(C_INT) :: SHT_rv

end function pass_assumed_type
end interface

Fortran usage:

use iso_c_binding, only : C_INT
integer(C_INT) rv_int
rv_int = pass_assumed_type(23_C_INT)

As a reminder, 23_C_INT creates an integer(C_INT) constant.

Note: Assumed-type was introduced in Fortran 2018.

26.10.2 passAssumedTypeDim

C library function in clibrary.c:

void passAssumedTypeDim(void *arg)
{

strncpy(last_function_called, "passAssumedTypeDim", MAXLAST);
}

clibrary.yaml:

- decl: int passAssumedTypeDim(void *arg+assumedtype+rank(1))

Fortran calls C via the following interface:

interface
subroutine pass_assumed_type_dim(arg) &

bind(C, name="passAssumedTypeDim")
implicit none
type(*) :: arg(*)

end subroutine pass_assumed_type_dim
end interface

Example usage:

use iso_c_binding, only : C_INT, C_DOUBLE
integer(C_INT) int_array(10)
real(C_DOUBLE) double_array(2,5)
call pass_assumed_type_dim(int_array)
call pass_assumed_type_dim(double_array)

26.10. Void Pointers 185

shroud Documentation, Release 0.13.0

Note: Assumed-type was introduced in Fortran 2018.

26.10.3 passVoidStarStar

C library function in clibrary.c:

void passVoidStarStar(void *in, void **out)
{

strncpy(last_function_called, "passVoidStarStar", MAXLAST);

*out = in;
}

clibrary.yaml:

- decl: void passVoidStarStar(void *in+intent(in), void **out+intent(out))

Fortran calls C via the following interface:

interface
subroutine pass_void_star_star(in, out) &

bind(C, name="passVoidStarStar")
use iso_c_binding, only : C_PTR
implicit none
type(C_PTR), value, intent(IN) :: in
type(C_PTR), intent(OUT) :: out

end subroutine pass_void_star_star
end interface

Example usage:

use iso_c_binding, only : C_INT, C_NULL_PTR, c_associated
integer(C_INT) int_var
cptr1 = c_loc(int_var)
cptr2 = C_NULL_PTR
call pass_void_star_star(cptr1, cptr2)
call assert_true(c_associated(cptr1, cptr2))

26.11 Function Pointers

26.11.1 callback1

C++ library function in tutorial.cpp:

int callback1(int in, int (*incr)(int))
{

return incr(in);
}

tutorial.yaml:

- decl: int callback1(int in, int (*incr)(int));

186 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

The C wrapper:

int TUT_callback1(int in, int (* incr)(int))
{

// splicer begin function.callback1
int SHC_rv = tutorial::callback1(in, incr);
return SHC_rv;
// splicer end function.callback1

}

Creates the abstract interface:

abstract interface
function callback1_incr(arg0) bind(C)

use iso_c_binding, only : C_INT
implicit none
integer(C_INT), value :: arg0
integer(C_INT) :: callback1_incr

end function callback1_incr
end interface

Fortran calls C via the following interface:

interface
function callback1(in, incr) &

result(SHT_rv) &
bind(C, name="TUT_callback1")

use iso_c_binding, only : C_INT
import :: callback1_incr
implicit none
integer(C_INT), value, intent(IN) :: in
procedure(callback1_incr) :: incr
integer(C_INT) :: SHT_rv

end function callback1
end interface

Fortran usage:

module worker
use iso_c_binding

contains
subroutine userincr(i) bind(C)
integer(C_INT), value :: i
! do work of callback

end subroutine user

subroutine work
call callback1(1, userincr)

end subroutine work
end module worker

26.11.2 callback1c

C library function in clibrary.c:

26.11. Function Pointers 187

shroud Documentation, Release 0.13.0

void callback1(int type, void (*incr)(void))
{

// Use type to decide how to call incr
}

clibrary.yaml:

- decl: int callback1(int type, void (*incr)()+external)

Creates the abstract interface:

abstract interface
subroutine callback1_incr() bind(C)

implicit none
end subroutine callback1_incr

end interface

Fortran calls C via the following interface:

interface
subroutine c_callback1(type, incr) &

bind(C, name="callback1")
use iso_c_binding, only : C_INT
import :: callback1_incr
implicit none
integer(C_INT), value, intent(IN) :: type
procedure(callback1_incr) :: incr

end subroutine c_callback1
end interface

The Fortran wrapper. By using external no abstract interface is used:

subroutine callback1(type, incr)
use iso_c_binding, only : C_INT
integer(C_INT), value, intent(IN) :: type
external :: incr
! splicer begin function.callback1
call c_callback1(type, incr)
! splicer end function.callback1

end subroutine callback1

Fortran usage:

module worker
use iso_c_binding

contains
subroutine userincr_int(i) bind(C)
integer(C_INT), value :: i
! do work of callback

end subroutine user_int

subroutine userincr_double(i) bind(C)
real(C_DOUBLE), value :: i
! do work of callback

end subroutine user_int

subroutine work

(continues on next page)

188 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

(continued from previous page)

call callback1c(1, userincr_int)
call callback1c(1, userincr_double)

end subrouine work
end module worker

26.12 Struct

Struct creating is described in Fortran Structs.

26.12.1 passStruct1

C library function in struct.c:

int passStruct1(const Cstruct1 *s1)
{

strncpy(last_function_called, "passStruct1", MAXLAST);
return s1->ifield;

}

struct.yaml:

- decl: int passStruct1(Cstruct1 *s1)

Fortran calls C via the following interface:

interface
function pass_struct1(arg) &

result(SHT_rv) &
bind(C, name="passStruct1")

use iso_c_binding, only : C_INT
import :: cstruct1
implicit none
type(cstruct1), intent(IN) :: arg
integer(C_INT) :: SHT_rv

end function pass_struct1
end interface

Fortran usage:

type(cstruct1) str1
str1%ifield = 12
str1%dfield = 12.6
call assert_equals(12, pass_struct1(str1), "passStruct1")

26.12.2 passStructByValue

C library function in struct.c:

int passStructByValue(Cstruct1 arg)
{

int rv = arg.ifield * 2;

(continues on next page)

26.12. Struct 189

shroud Documentation, Release 0.13.0

(continued from previous page)

// Caller will not see changes.
arg.ifield += 1;
return rv;

}

struct.yaml:

- decl: double passStructByValue(struct1 arg)

Fortran calls C via the following interface:

interface
function pass_struct_by_value(arg) &

result(SHT_rv) &
bind(C, name="passStructByValue")

use iso_c_binding, only : C_INT
import :: cstruct1
implicit none
type(cstruct1), value, intent(IN) :: arg
integer(C_INT) :: SHT_rv

end function pass_struct_by_value
end interface

Fortran usage:

type(cstruct1) str1
str1%ifield = 2_C_INT
str1%dfield = 2.0_C_DOUBLE
rvi = pass_struct_by_value(str1)
call assert_equals(4, rvi, "pass_struct_by_value")
! Make sure str1 was passed by value.
call assert_equals(2_C_INT, str1%ifield, "pass_struct_by_value ifield")
call assert_equals(2.0_C_DOUBLE, str1%dfield, "pass_struct_by_value dfield")

26.13 Class Type

26.13.1 constructor and destructor

The C++ header file from classes.hpp.

class Class1
{
public:

int m_flag;
int m_test;
Class1() : m_flag(0), m_test(0) {};
Class1(int flag) : m_flag(flag), m_test(0) {};

};

classes.yaml:

declarations:
- decl: class Class1

(continues on next page)

190 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

(continued from previous page)

declarations:
- decl: Class1()
format:

function_suffix: _default
- decl: Class1(int flag)
format:
function_suffix: _flag

- decl: ~Class1() +name(delete)

A C wrapper function is created for each constructor and the destructor.

The C wrappers:

CLA_Class1 * CLA_Class1_ctor_default(CLA_Class1 * SHC_rv)
{

// splicer begin class.Class1.method.ctor_default
classes::Class1 *SHCXX_rv = new classes::Class1();
SHC_rv->addr = static_cast<void *>(SHCXX_rv);
SHC_rv->idtor = 1;
return SHC_rv;
// splicer end class.Class1.method.ctor_default

}

CLA_Class1 * CLA_Class1_ctor_flag(int flag, CLA_Class1 * SHC_rv)
{

// splicer begin class.Class1.method.ctor_flag
classes::Class1 *SHCXX_rv = new classes::Class1(flag);
SHC_rv->addr = static_cast<void *>(SHCXX_rv);
SHC_rv->idtor = 1;
return SHC_rv;
// splicer end class.Class1.method.ctor_flag

}

void CLA_Class1_delete(CLA_Class1 * self)
{

classes::Class1 *SH_this = static_cast<classes::Class1 *>
(self->addr);

// splicer begin class.Class1.method.delete
delete SH_this;
self->addr = nullptr;
// splicer end class.Class1.method.delete

}

The corresponding Fortran interfaces:

interface
function c_class1_ctor_default(SHT_rv) &

result(SHT_prv) &
bind(C, name="CLA_Class1_ctor_default")

use iso_c_binding, only : C_PTR
import :: CLA_SHROUD_capsule_data
implicit none
type(CLA_SHROUD_capsule_data), intent(OUT) :: SHT_rv
type(C_PTR) :: SHT_prv

end function c_class1_ctor_default
end interface

26.13. Class Type 191

shroud Documentation, Release 0.13.0

interface
function c_class1_ctor_flag(flag, SHT_rv) &

result(SHT_prv) &
bind(C, name="CLA_Class1_ctor_flag")

use iso_c_binding, only : C_INT, C_PTR
import :: CLA_SHROUD_capsule_data
implicit none
integer(C_INT), value, intent(IN) :: flag
type(CLA_SHROUD_capsule_data), intent(OUT) :: SHT_rv
type(C_PTR) :: SHT_prv

end function c_class1_ctor_flag
end interface

interface
subroutine c_class1_delete(self) &

bind(C, name="CLA_Class1_delete")
import :: CLA_SHROUD_capsule_data
implicit none
type(CLA_SHROUD_capsule_data), intent(INOUT) :: self

end subroutine c_class1_delete
end interface

And the Fortran wrappers:

function class1_ctor_default() &
result(SHT_rv)

use iso_c_binding, only : C_PTR
type(class1) :: SHT_rv
type(C_PTR) :: SHT_prv
! splicer begin class.Class1.method.ctor_default
SHT_prv = c_class1_ctor_default(SHT_rv%cxxmem)
! splicer end class.Class1.method.ctor_default

end function class1_ctor_default

function class1_ctor_flag(flag) &
result(SHT_rv)

use iso_c_binding, only : C_INT, C_PTR
integer(C_INT), value, intent(IN) :: flag
type(class1) :: SHT_rv
type(C_PTR) :: SHT_prv
! splicer begin class.Class1.method.ctor_flag
SHT_prv = c_class1_ctor_flag(flag, SHT_rv%cxxmem)
! splicer end class.Class1.method.ctor_flag

end function class1_ctor_flag

subroutine class1_delete(obj)
class(class1) :: obj
! splicer begin class.Class1.method.delete
call c_class1_delete(obj%cxxmem)
! splicer end class.Class1.method.delete

end subroutine class1_delete

The Fortran shadow class adds the type-bound method for the destructor:

type, bind(C) :: SHROUD_class1_capsule
type(C_PTR) :: addr = C_NULL_PTR ! address of C++ memory

(continues on next page)

192 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

(continued from previous page)

integer(C_INT) :: idtor = 0 ! index of destructor
end type SHROUD_class1_capsule

type class1
type(SHROUD_class1_capsule) :: cxxmem

contains
procedure :: delete => class1_delete

end type class1

The constructors are not type-bound procedures. But they are combined into a generic interface.

interface class1
module procedure class1_ctor_default
module procedure class1_ctor_flag

end interface class1

A class instance is created and destroy from Fortran as:

use classes_mod
type(class1) obj

obj = class1()
call obj%delete

Corresponding C++ code:

include <classes.hpp>

classes::Class1 * obj = new classes::Class1;

delete obj;

26.13.2 Getter and Setter

The C++ header file from classes.hpp.

class Class1
{
public:

int m_flag;
int m_test;

};

classes.yaml:

declarations:
- decl: class Class1

declarations:
- decl: int m_flag +readonly;
- decl: int m_test +name(test);

A C wrapper function is created for each getter and setter. If the readonly attribute is added, then only a getter is
created. In this case m_ is a convention used to designate member variables. The Fortran attribute is renamed as test
to avoid cluttering the Fortran API with this convention.

The C wrappers:

26.13. Class Type 193

shroud Documentation, Release 0.13.0

int CLA_Class1_get_m_flag(CLA_Class1 * self)
{

classes::Class1 *SH_this = static_cast<classes::Class1 *>
(self->addr);

// splicer begin class.Class1.method.get_m_flag
// skip call c_getter
return SH_this->m_flag;
// splicer end class.Class1.method.get_m_flag

}

int CLA_Class1_get_test(CLA_Class1 * self)
{

classes::Class1 *SH_this = static_cast<classes::Class1 *>
(self->addr);

// splicer begin class.Class1.method.get_test
// skip call c_getter
return SH_this->m_test;
// splicer end class.Class1.method.get_test

}

void CLA_Class1_set_test(CLA_Class1 * self, int val)
{

classes::Class1 *SH_this = static_cast<classes::Class1 *>
(self->addr);

// splicer begin class.Class1.method.set_test
// skip call c_setter
SH_this->m_test = val;
// splicer end class.Class1.method.set_test

}

The corresponding Fortran interfaces:

interface
function c_class1_get_m_flag(self) &

result(SHT_rv) &
bind(C, name="CLA_Class1_get_m_flag")

use iso_c_binding, only : C_INT
import :: CLA_SHROUD_capsule_data
implicit none
type(CLA_SHROUD_capsule_data), intent(IN) :: self
integer(C_INT) :: SHT_rv

end function c_class1_get_m_flag
end interface

interface
function c_class1_get_test(self) &

result(SHT_rv) &
bind(C, name="CLA_Class1_get_test")

use iso_c_binding, only : C_INT
import :: CLA_SHROUD_capsule_data
implicit none
type(CLA_SHROUD_capsule_data), intent(IN) :: self
integer(C_INT) :: SHT_rv

end function c_class1_get_test
end interface

194 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

interface
subroutine c_class1_set_test(self, val) &

bind(C, name="CLA_Class1_set_test")
use iso_c_binding, only : C_INT
import :: CLA_SHROUD_capsule_data
implicit none
type(CLA_SHROUD_capsule_data), intent(IN) :: self
integer(C_INT), value, intent(IN) :: val

end subroutine c_class1_set_test
end interface

And the Fortran wrappers:

function class1_get_m_flag(obj) &
result(SHT_rv)

use iso_c_binding, only : C_INT
class(class1) :: obj
integer(C_INT) :: SHT_rv
! splicer begin class.Class1.method.get_m_flag
SHT_rv = c_class1_get_m_flag(obj%cxxmem)
! splicer end class.Class1.method.get_m_flag

end function class1_get_m_flag

function class1_get_test(obj) &
result(SHT_rv)

use iso_c_binding, only : C_INT
class(class1) :: obj
integer(C_INT) :: SHT_rv
! splicer begin class.Class1.method.get_test
SHT_rv = c_class1_get_test(obj%cxxmem)
! splicer end class.Class1.method.get_test

end function class1_get_test

subroutine class1_set_test(obj, val)
use iso_c_binding, only : C_INT
class(class1) :: obj
integer(C_INT), value, intent(IN) :: val
! splicer begin class.Class1.method.set_test
call c_class1_set_test(obj%cxxmem, val)
! splicer end class.Class1.method.set_test

end subroutine class1_set_test

The Fortran shadow class adds the type-bound methods:

type class1
type(SHROUD_class1_capsule) :: cxxmem

contains
procedure :: get_m_flag => class1_get_m_flag
procedure :: get_test => class1_get_test
procedure :: set_test => class1_set_test

end type class1

The class variables can be used as:

use classes_mod
type(class1) obj

(continues on next page)

26.13. Class Type 195

shroud Documentation, Release 0.13.0

(continued from previous page)

integer iflag

obj = class1()
call obj%set_test(4)
iflag = obj%get_test()

Corresponding C++ code:

include <classes.hpp>
classes::Class1 obj = new * classes::Class1;
obj->m_test = 4;
int iflag = obj->m_test;

26.13.3 Struct as a Class

While C does not support object-oriented programming directly, it can be emulated by using structs. The ‘base
class’ struct is Cstruct_as_clss. It is subclassed by Cstruct_as_subclass which explicitly duplicates the
members of C_struct_as_class. The C header file from struct.h.

struct Cstruct_as_class {
int x1;
int y1;

};
typedef struct Cstruct_as_class Cstruct_as_class;

/* The first members match Cstruct_as_class */
struct Cstruct_as_subclass {

int x1;
int y1;
int z1;

};
typedef struct Cstruct_as_subclass Cstruct_as_subclass;

The C ‘constructor’ returns a pointer to an instance of the object.

Cstruct_as_class *Create_Cstruct_as_class(void);
Cstruct_as_class *Create_Cstruct_as_class_args(int x, int y);

The ‘methods’ pass an instance of the class as an explicit this object.

int Cstruct_as_class_sum(const Cstruct_as_class *point);

The methods are wrapped in classes.yaml:

declarations:
- decl: struct Cstruct_as_class {

int x1;
int y1;

};
options:
wrap_struct_as: class

- decl: Cstruct_as_class *Create_Cstruct_as_class(void)
options:
class_ctor: Cstruct_as_class

(continues on next page)

196 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

(continued from previous page)

- decl: Cstruct_as_class *Create_Cstruct_as_class_args(int x, int y)
options:
class_ctor: Cstruct_as_class

- decl: int Cstruct_as_class_sum(const Cstruct_as_class *point +pass)
options:
class_method: Cstruct_as_class

format:
F_name_function: sum

- decl: struct Cstruct_as_subclass {
int x1;
int y1;
int z1;

};
options:
wrap_struct_as: class
class_baseclass: Cstruct_as_class

- decl: Cstruct_as_subclass *Create_Cstruct_as_subclass_args(int x, int y, int z)
options:
wrap_python: False
class_ctor: Cstruct_as_subclass

This uses several options to creates the class features for the struct: wrap_struct_as, class_ctor, class_method.

type cstruct_as_class
type(STR_SHROUD_capsule_data) :: cxxmem
! splicer begin class.Cstruct_as_class.component_part
! splicer end class.Cstruct_as_class.component_part

contains
procedure :: get_x1 => cstruct_as_class_get_x1
procedure :: set_x1 => cstruct_as_class_set_x1
procedure :: get_y1 => cstruct_as_class_get_y1
procedure :: set_y1 => cstruct_as_class_set_y1
procedure :: sum => cstruct_as_class_sum
! splicer begin class.Cstruct_as_class.type_bound_procedure_part
! splicer end class.Cstruct_as_class.type_bound_procedure_part

end type cstruct_as_class

The subclass is created using the Fortran EXTENDS keyword. No additional members are added. The cxxmem field
from cstruct_as_class will now point to an instance of the C struct Cstruct_as_subclass.

type, extends(cstruct_as_class) :: cstruct_as_subclass
! splicer begin class.Cstruct_as_subclass.component_part
! splicer end class.Cstruct_as_subclass.component_part

contains
procedure :: get_x1 => cstruct_as_subclass_get_x1
procedure :: set_x1 => cstruct_as_subclass_set_x1
procedure :: get_y1 => cstruct_as_subclass_get_y1
procedure :: set_y1 => cstruct_as_subclass_set_y1
procedure :: get_z1 => cstruct_as_subclass_get_z1
procedure :: set_z1 => cstruct_as_subclass_set_z1
! splicer begin class.Cstruct_as_subclass.type_bound_procedure_part
! splicer end class.Cstruct_as_subclass.type_bound_procedure_part

end type cstruct_as_subclass

The C wrapper to construct the struct-as-class. It calls the C function and fills in the fields for the shadow struct.

26.13. Class Type 197

shroud Documentation, Release 0.13.0

STR_Cstruct_as_class * STR_Create_Cstruct_as_class(
STR_Cstruct_as_class * SHC_rv)

{
// splicer begin function.Create_Cstruct_as_class
Cstruct_as_class * SHCXX_rv = Create_Cstruct_as_class();
SHC_rv->addr = SHCXX_rv;
SHC_rv->idtor = 0;
return SHC_rv;
// splicer end function.Create_Cstruct_as_class

}

A Fortran generic interface is created for the class:

interface cstruct_as_class
module procedure create_cstruct_as_class
module procedure create_cstruct_as_class_args

end interface cstruct_as_class

And the Fortran constructor call the C wrapper function.

function create_cstruct_as_class() &
result(SHT_rv)

use iso_c_binding, only : C_PTR
type(cstruct_as_class) :: SHT_rv
type(C_PTR) :: SHT_prv
! splicer begin function.create_cstruct_as_class
SHT_prv = c_create_cstruct_as_class(SHT_rv%cxxmem)
! splicer end function.create_cstruct_as_class

end function create_cstruct_as_class

The class can be used as:

type(cstruct_as_class) point1, point2
type(cstruct_as_subclass) subpoint1

call set_case_name("test_struct_class")

! F_name_associated is blank so the associated function is not created.
! Instead look at pointer directly.
! call assert_false(point1%associated())
call assert_false(c_associated(point1%cxxmem%addr))

point1 = Cstruct_as_class()
call assert_equals(0, point1%get_x1())
call assert_equals(0, point1%get_y1())

point2 = Cstruct_as_class(1, 2)
call assert_equals(1, point2%get_x1())
call assert_equals(2, point2%get_y1())

call assert_equals(3, cstruct_as_class_sum(point2))
call assert_equals(3, point2%sum())

subpoint1 = Cstruct_as_subclass(1, 2, 3)
call assert_equals(1, subpoint1%get_x1())
call assert_equals(2, subpoint1%get_y1())
call assert_equals(3, subpoint1%get_z1())
call assert_equals(3, subpoint1%sum())

198 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

26.14 Default Value Arguments

The default values are provided in the function declaration.

C++ library function in tutorial.cpp:

double UseDefaultArguments(double arg1 = 3.1415, bool arg2 = true);

tutorial.yaml:

- decl: double UseDefaultArguments(double arg1 = 3.1415, bool arg2 = true)
default_arg_suffix:
-
- _arg1
- _arg1_arg2

A C++ wrapper is created which calls the C++ function with no arguments with default values and then adds a wrapper
with an explicit argument for each default value argument. In this case, three wrappers are created. Since the C++
compiler provides the default value, it is necessary to create each wrapper.

wrapTutorial.cpp:

double TUT_UseDefaultArguments(void)
{

// splicer begin function.UseDefaultArguments
double SHC_rv = tutorial::UseDefaultArguments();
return SHC_rv;
// splicer end function.UseDefaultArguments

}

double TUT_UseDefaultArguments_arg1(double arg1)
{

// splicer begin function.UseDefaultArguments_arg1
double SHC_rv = tutorial::UseDefaultArguments(arg1);
return SHC_rv;
// splicer end function.UseDefaultArguments_arg1

}

double TUT_UseDefaultArguments_arg1_arg2(double arg1, bool arg2)
{

// splicer begin function.UseDefaultArguments_arg1_arg2
double SHC_rv = tutorial::UseDefaultArguments(arg1, arg2);
return SHC_rv;
// splicer end function.UseDefaultArguments_arg1_arg2

}

This creates three corresponding Fortran interfaces:

interface
function c_use_default_arguments() &

result(SHT_rv) &
bind(C, name="TUT_UseDefaultArguments")

use iso_c_binding, only : C_DOUBLE
implicit none
real(C_DOUBLE) :: SHT_rv

end function c_use_default_arguments
end interface

26.14. Default Value Arguments 199

shroud Documentation, Release 0.13.0

interface
function c_use_default_arguments_arg1(arg1) &

result(SHT_rv) &
bind(C, name="TUT_UseDefaultArguments_arg1")

use iso_c_binding, only : C_DOUBLE
implicit none
real(C_DOUBLE), value, intent(IN) :: arg1
real(C_DOUBLE) :: SHT_rv

end function c_use_default_arguments_arg1
end interface

interface
function c_use_default_arguments_arg1_arg2(arg1, arg2) &

result(SHT_rv) &
bind(C, name="TUT_UseDefaultArguments_arg1_arg2")

use iso_c_binding, only : C_BOOL, C_DOUBLE
implicit none
real(C_DOUBLE), value, intent(IN) :: arg1
logical(C_BOOL), value, intent(IN) :: arg2
real(C_DOUBLE) :: SHT_rv

end function c_use_default_arguments_arg1_arg2
end interface

In many case the interfaces would be enough to call the routines. However, in order to have a generic interface, there
must be explicit Fortran wrappers:

function use_default_arguments() &
result(SHT_rv)

use iso_c_binding, only : C_DOUBLE
real(C_DOUBLE) :: SHT_rv
! splicer begin function.use_default_arguments
SHT_rv = c_use_default_arguments()
! splicer end function.use_default_arguments

end function use_default_arguments

function use_default_arguments_arg1(arg1) &
result(SHT_rv)

use iso_c_binding, only : C_DOUBLE
real(C_DOUBLE), value, intent(IN) :: arg1
real(C_DOUBLE) :: SHT_rv
! splicer begin function.use_default_arguments_arg1
SHT_rv = c_use_default_arguments_arg1(arg1)
! splicer end function.use_default_arguments_arg1

end function use_default_arguments_arg1

function use_default_arguments_arg1_arg2(arg1, arg2) &
result(SHT_rv)

use iso_c_binding, only : C_BOOL, C_DOUBLE
real(C_DOUBLE), value, intent(IN) :: arg1
logical, value, intent(IN) :: arg2
real(C_DOUBLE) :: SHT_rv
! splicer begin function.use_default_arguments_arg1_arg2
logical(C_BOOL) :: SHT_arg2_cxx
SHT_arg2_cxx = arg2 ! coerce to C_BOOL
SHT_rv = c_use_default_arguments_arg1_arg2(arg1, SHT_arg2_cxx)
! splicer end function.use_default_arguments_arg1_arg2

(continues on next page)

200 Chapter 26. Sample Fortran Wrappers

shroud Documentation, Release 0.13.0

(continued from previous page)

end function use_default_arguments_arg1_arg2

The Fortran generic interface adds the ability to call any of the functions by the C++ function name:

interface use_default_arguments
module procedure use_default_arguments
module procedure use_default_arguments_arg1
module procedure use_default_arguments_arg1_arg2

end interface use_default_arguments

Usage:

real(C_DOUBLE) rv
rv = use_default_arguments()
rv = use_default_arguments(1.d0)
rv = use_default_arguments(1.d0, .false.)

26.15 Generic Real

C library function in clibrary.c:

void GenericReal(double arg)
{

global_double = arg;
return;

}

generic.yaml:

- decl: void GenericReal(double arg)
fortran_generic:
- decl: (float arg)
function_suffix: float

- decl: (double arg)
function_suffix: double

Fortran calls C via the following interface:

interface
subroutine c_generic_real(arg) &

bind(C, name="GenericReal")
use iso_c_binding, only : C_DOUBLE
implicit none
real(C_DOUBLE), value, intent(IN) :: arg

end subroutine c_generic_real
end interface

There is a single interface since there is a single C function. A generic interface is created for each declaration in the
fortran_generic block.

interface generic_real
module procedure generic_real_float
module procedure generic_real_double

end interface generic_real

26.15. Generic Real 201

shroud Documentation, Release 0.13.0

A Fortran wrapper is created for each declaration in the fortran_generic block. The argument is explicitly converted
to a C_DOUBLE before calling the C function in generic_real_float. There is no conversion necessary in
generic_real_double.

subroutine generic_real_float(arg)
use iso_c_binding, only : C_DOUBLE, C_FLOAT
real(C_FLOAT), value, intent(IN) :: arg
! splicer begin function.generic_real_float
call c_generic_real(real(arg, C_DOUBLE))
! splicer end function.generic_real_float

end subroutine generic_real_float

subroutine generic_real_double(arg)
use iso_c_binding, only : C_DOUBLE
real(C_DOUBLE), value, intent(IN) :: arg
! splicer begin function.generic_real_double
call c_generic_real(arg)
! splicer end function.generic_real_double

end subroutine generic_real_double

The function can be called via the generic interface with either type. If the specific function is called, the correct type
must be passed.

call generic_real(0.0)
call generic_real(0.0d0)

call generic_real_float(0.0)
call generic_real_double(0.0d0)

In C, the compiler will promote the argument.

GenericReal(0.0f);
GenericReal(0.0);

202 Chapter 26. Sample Fortran Wrappers

CHAPTER 27

Numpy Struct Descriptor

struct.yaml:

- decl: struct Cstruct1 {
int ifield;
double dfield;

};

// Create PyArray_Descr for Cstruct1
static PyArray_Descr *PY_Cstruct1_create_array_descr(void)
{

int ierr;
PyObject *obj = NULL;
PyObject * lnames = NULL;
PyObject * ldescr = NULL;
PyObject * dict = NULL;
PyArray_Descr *dtype = NULL;

lnames = PyList_New(2);
if (lnames == NULL) goto fail;
ldescr = PyList_New(2);
if (ldescr == NULL) goto fail;

// ifield
obj = PyString_FromString("ifield");
if (obj == NULL) goto fail;
PyList_SET_ITEM(lnames, 0, obj);
obj = (PyObject *) PyArray_DescrFromType(NPY_INT);
if (obj == NULL) goto fail;
PyList_SET_ITEM(ldescr, 0, obj);

// dfield
obj = PyString_FromString("dfield");
if (obj == NULL) goto fail;
PyList_SET_ITEM(lnames, 1, obj);

(continues on next page)

203

shroud Documentation, Release 0.13.0

(continued from previous page)

obj = (PyObject *) PyArray_DescrFromType(NPY_DOUBLE);
if (obj == NULL) goto fail;
PyList_SET_ITEM(ldescr, 1, obj);
obj = NULL;

dict = PyDict_New();
if (dict == NULL) goto fail;
ierr = PyDict_SetItemString(dict, "names", lnames);
if (ierr == -1) goto fail;
lnames = NULL;
ierr = PyDict_SetItemString(dict, "formats", ldescr);
if (ierr == -1) goto fail;
ldescr = NULL;
ierr = PyArray_DescrAlignConverter(dict, &dtype);
if (ierr == 0) goto fail;
return dtype;

fail:
Py_XDECREF(obj);
if (lnames != NULL) {

for (int i=0; i < 2; i++) {
Py_XDECREF(PyList_GET_ITEM(lnames, i));

}
Py_DECREF(lnames);

}
if (ldescr != NULL) {

for (int i=0; i < 2; i++) {
Py_XDECREF(PyList_GET_ITEM(ldescr, i));

}
Py_DECREF(ldescr);

}
Py_XDECREF(dict);
Py_XDECREF(dtype);
return NULL;

}

204 Chapter 27. Numpy Struct Descriptor

CHAPTER 28

Glossary

bufferify

The process of creating a buffer. The C wrapper may create an additional function for each wrapped
function. This function has additional arguments needed for the Fortran interface to pass the metadata of
the argument such as the size.

C wrapper

The wrapper with a C API. When wrapping C++, the C wrapper will be C++ code but functions will use
extern "C" block to allow them to be called from C and Fortran using the bind(C) keyword.

capsule

Holds a pointer to a C++ class instance and some memory management flags. The name was inspired by
the Python PyCapsule type.

Fortran wrapper

Fortran functions which call the C wrapper functions.

library

A collection of C++ declarations wrapped at the same time. This creates a Fortran or Python module.

native type

Integer or real of any size.

shadow class

A Fortran derived type which contains a capsule and type-bound functions to provide a Fortran object-
oriented interface similar to a C++ class. Similar to a PyObject struct in Python.

splicer

A block of code which implements the wrapper. It is generated by Shroud but can be replaced with a user
provided implementation. A splicer also provides a place to insert code into a generated file a well defined
places. This allows user provided code to be preserved when regenerating wrappers.

205

shroud Documentation, Release 0.13.0

206 Chapter 28. Glossary

CHAPTER 29

Indices and tables

• genindex

• modindex

• search

207

shroud Documentation, Release 0.13.0

208 Chapter 29. Indices and tables

Bibliography

[Python_Format] https://docs.python.org/2/library/string.html#format-string-syntax

[Python_Refcount] https://docs.python.org/3/c-api/intro.html#reference-count-details

[yaml] yaml.org

[blog1] http://blog.enthought.com/python/numpy-arrays-with-pre-allocated-memory

[blog2] http://blog.enthought.com/python/numpy/simplified-creation-of-numpy-arrays-from-pre-allocated-memory

209

https://docs.python.org/2/library/string.html#format-string-syntax
https://docs.python.org/3/c-api/intro.html#reference-count-details
http://yaml.org/
http://blog.enthought.com/python/numpy-arrays-with-pre-allocated-memory
http://blog.enthought.com/python/numpy/simplified-creation-of-numpy-arrays-from-pre-allocated-memory

	Introduction
	Installing
	Tutorial
	Input
	Pointers and Arrays
	Types
	Namespaces
	Structs and Classes
	Default Arguments
	Templates
	Declarations
	Output
	C and C++
	Fortran
	Python
	Cookbook
	Typemaps
	Statements
	C Statements
	Fortran Statements
	Reference
	Releases
	Fortran Previous Work
	Python Previous Work
	Future Work
	Sample Fortran Wrappers
	Numpy Struct Descriptor
	Glossary
	Indices and tables
	Bibliography

