

Shroud

Shroud is a tool for creating a Fortran or Python interface to a C
or C++ library. It can also create a C API for a C++ library.

The user creates a YAML file with the C/C++ declarations to be wrapped
along with some annotations to provide semantic information and code
generation options. Shroud produces a wrapper for the library.
The generated code is highly-readable and intended to be similar to code
that would be hand-written to create the bindings.

	verb

	
	wrap or dress (a body) in a shroud for burial.

	cover or envelop so as to conceal from view.

Contents

	Introduction

	Installing

	Tutorial

	Input

	Pointers and Arrays

	Types

	Namespaces

	Structs and Classes

	Default Arguments

	Templates

	Declarations

	Output

	C and C++

	Fortran

	Python

	Cookbook

	Typemaps

	Statements

	C Statements

	Fortran Statements

	Reference

	Releases

	Fortran Previous Work

	Python Previous Work

	Future Work

	Sample Fortran Wrappers

	Numpy Struct Descriptor

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Shroud is a tool for creating a Fortran or Python interface to a C
or C++ library. It can also create a C API for a C++ library.

The user creates a YAML file with the C/C++ declarations to be wrapped
along with some annotations to provide semantic information and code
generation options. Shroud produces a wrapper for the library.
The generated code is highly-readable and intended to be similar to code
that would be hand-written to create the bindings.

Input is read from the YAML file which describes the types, variables,
enumerations, functions, structures and classes to wrap. This file
must be created by the user. Shroud does not parse C++ code to
extract the API. That was considered a large task and not needed for
the size of the API of the library that inspired Shroud’s
development. In addition, there is a lot of semantic information which
must be provided by the user that may be difficult to infer from the
source alone. However, the task of creating the input file is
simplified since the C++ declarations can be cut-and-pasted into the
YAML file.

In some sense, Shroud can be thought of as a fancy macro processor.
It takes the function declarations from the YAML file, breaks them
down into a series of contexts (library, class, function, argument)
and defines a dictionary of format macros of the form key=value.
There are then a series of macro templates which are expanded to
create the wrapper functions. The overall structure of the generated
code is defined by the classes and functions in the YAML file as well
as the requirements of C++ and Fortran syntax.

Each declaration can have annotations which provide semantic
information. This information is used to create more idiomatic
wrappers. Shroud started as a tool for creating a Fortran wrapper
for a C++ library. The declarations and annotations in the input file
also provide enough information to create a Python wrapper.

Goals

	Simplify the creating of wrapper for a C++ library.

	Preserves the object-oriented style of C++ classes.

	Create an idiomatic wrapper API from the C++ API.

	Generate code which is easy to understand.

	No dependent runtime library.

Fortran

The Fortran wrapper is created by using the interoperability with C features
added in Fortran 2003.
This includes the iso_c_binding module and the bind and value keywords.
Fortran cannot interoperate with C++ directly and uses C as the lingua franca.
C++ can communicate with C via a common heritage and the extern "C" keyword.
A C API for the C++ API is produced as a byproduct of the Fortran wrapping.

Using a C++ API to create an object and call a method:

Instance * inst = new Instance;
inst->method(1);

In Fortran this becomes:

type(instance) inst
inst = instance()
call inst%method(1)

Note

The ability to generate C++ wrappers for Fortran is not supported.

 Installing

Installing

The easiest way to install Shroud is via pip which will fetch a file from
pypi [https://pypi.org]

pip install llnl-shroud

This will install Shroud into the same directory as pip.
A virtual environment can be created if another destination directory
is desired.
For details see the
python docs [https://packaging.python.org/tutorials/installing-packages/#creating-virtual-environments]

The source is available from github.com/LLNL/shroud [https://github.com/LLNL/shroud]
A shiv [https://github.com/linkedin/shiv] packaged executable is also available
at github releases [https://github.com/LLNL/shroud/releases].
This is an executable file which contains Shroud and PyYAML and uses the Python3 in
the user’s path.

Shroud is written in Python and has been tested with version 2.7 and 3.4+.
It requires the module:

	PyYAML https://github.com/yaml/pyyaml

After downloading the source:

python setup.py install

This will create the script shroud in the same directory as Python.

Since shroud installs into Python’s bin directory, it may be desirable to setup
a virtual environment to try it out:

$ cd my_project_folder
$ virtualenv my_project
$ source my_project/bin/activate
$ cd path/to/shroud/source
$ python setup.py install

This will create an executable at my_project/bin/shroud.
This version requires the virtual environment to run and
may be difficult to share with others.

It’s possible to create a standalone executable with
shiv [https://github.com/linkedin/shiv]:

$ cd path/to/shroud/source
$shiv --python '/usr/bin/env python3' -c shroud -o dist/shroud.pyz .

A file shroud.pyz is created which bundles all of shroud and pyYAML into
a single file. It uses the python on your path to run.

Building wrappers with CMake

Shroud can produce a CMake macro file with the option -cmake.
This option can be incorporated into a CMakefile as:

if(EXISTS ${SHROUD_EXECUTABLE})
 execute_process(COMMAND ${SHROUD_EXECUTABLE}
 --cmake ${CMAKE_CURRENT_BINARY_DIR}/SetupShroud.cmake
 ERROR_VARIABLE SHROUD_cmake_error
 OUTPUT_STRIP_TRAILING_WHITESPACE)
 if(${SHROUD_cmake_error})
 message(FATAL_ERROR "Error from Shroud: ${SHROUD_cmake_error}")
 endif()
 include(${CMAKE_CURRENT_BINARY_DIR}/SetupShroud.cmake)
endif()

The path to Shroud must be defined to CMake. It can be defined on the command line as:

cmake -DSHROUD_EXECUTABLE=/full/path/bin/shroud

The add_shroud macro can then be used in other CMakeLists.txt files as:

add_shroud(
 YAML_INPUT_FILE ${YAML_INPUT_FILE}
 C_FORTRAN_OUTPUT_DIR c_fortran
)

CMake will treat all Fortran files as free format with the command:

set(CMAKE_Fortran_FORMAT FREE)

Building Python extensions

setup.py can be used to build the extension module from the files created by shroud.
This example is drawn from the run/tutorial example. You must provide the paths
to the input YAML file and the C++ library source files:

import os
from distutils.core import setup, Extension
import shroud
import numpy

outdir = 'build/source'
if not os.path.exists(outdir):
 os.makedirs(outdir)
config = shroud.create_wrapper('../../../tutorial.yaml',
 path=['../../..'],
 outdir=outdir)

tutorial = Extension(
 'tutorial',
 sources = config.pyfiles + ['../tutorial.cpp'],
 include_dirs=[numpy.get_include(), '..']
)

setup(
 name='tutorial',
 version="0.0",
 description='shroud tutorial',
 author='xxx',
 author_email='yyy@zz',
 ext_modules=[tutorial],
)

The directory structure is layed out as:

tutorial.yaml
run
 tutorial
 tutorial.cpp # C++ library to wrap
 tutorial.hpp
 python
 setup.py # setup file shown above
 build
 source
 # create by shroud
 pyClass1type.cpp
 pySingletontype.cpp
 pyTutorialmodule.cpp
 pyTutorialmodule.hpp
 pyTutorialhelper.cpp
 lib
 tutorial.so # generated module

 Tutorial

Tutorial

This tutorial will walk through the steps required to create a Fortran or
Python wrapper for a simple C++ library.

Functions

The simplest item to wrap is a function in the file tutorial.hpp:

namespace tutorial {
 void NoReturnNoArguments(void);
}

This is wrapped using a YAML input file tutorial.yaml:

library: Tutorial
cxx_header: tutorial.hpp

declarations:
- decl: namespace tutorial
 declarations:
 - decl: void NoReturnNoArguments()

library is used to name output files and name the
Fortran module. cxx_header is the name of a C++ header file which
contains the declarations for functions to be wrapped. declarations
is a sequence of mappings which describe the functions to wrap.

Process the file with Shroud:

% shroud tutorial.yaml
Wrote wrapTutorial.h
Wrote wrapTutorial.cpp
Wrote wrapftutorial.f

Wrote pyClass1type.cpp
Wrote pyTutorialmodule.hpp
Wrote pyTutorialmodule.cpp
Wrote pyTutorialutil.cpp

The C++ code to call the function:

#include "tutorial.hpp"

using namespace tutorial;
NoReturnNoArguments();

And the Fortran version:

use tutorial_mod
call no_return_no_arguments

The generated code is listed at NoReturnNoArguments.

Arguments

Integer and Real

Integer and real types are handled using the iso_c_binding module
which match them directly to the corresponding types in C++.
To wrap PassByValue:

double PassByValue(double arg1, int arg2)
{
 return arg1 + arg2;
}

Add the declaration to the YAML file:

declarations:
- decl: double PassByValue(double arg1, int arg2)

Usage:

use tutorial_mod
real(C_DOUBLE) result
result = pass_by_value(1.d0, 4)

import tutorial
result = tutorial.PassByValue(1.0, 4)

Pointer Functions

Functions which return a pointer will create a Fortran wrapper with
the POINTER attribute:

- decl: int * ReturnIntPtrDim(int *len+intent(out)+hidden) +dimension(len)

The C++ routine returns a pointer to an array and the length of the
array in argument len. The Fortran API does not need to pass the
len argument since the returned pointer will know its length. The
hidden attribute will cause len to be omitted from the Fortran
API, but still passed to the C wrapper.

It can be used as:

integer(C_INT), pointer :: intp(:)
integer len

intp => return_int_ptr_dim_pointer()
len = size(intp)

The generated code is listed at returnIntPtrDimPointer.

A numeric pointer may also be processed differently by setting the
deref attribute. Possible values are pointer, the default, for a
Fortran pointer. allocatable to create a Fortran allocatable array
and copy the data into it. raw returns a type(C_PTR). In this
case, the len argument should not be hidden so it can be used from
Fortran. And scalar can be used when returning a pointer to a
scalar. In this case, the len argument would be ignored.

Pointer arguments

When a C++ routine accepts a pointer argument it may mean
several things

	output a scalar

	input or output an array

	pass-by-reference for a struct or class.

In this example, len and values are an input array and
result is an output scalar:

void Sum(size_t len, const int *values, int *result)
{
 int sum = 0;
 for (size_t i=0; i < len; i++) {
 sum += values[i];
 }
 *result = sum;
 return;
}

When this function is wrapped it is necessary to give some annotations
in the YAML file to describe how the variables should be mapped to
Fortran:

- decl: void Sum(size_t len +implied(size(values)),
 const int *values +rank(1),
 int *result +intent(out))

In the BIND(C) interface only len uses the value attribute.
Without the attribute Fortran defaults to pass-by-reference
i.e. passes a pointer.
The rank attribute defines the variable as a one dimensional,
assumed-shape array. In the C interface this maps to an
assumed-length array. C pointers, like assumed-length arrays, have no
idea how many values they point to. This information is passed
by the len argument.

The len argument defines the implied attribute. This argument
is not part of the Fortran API since its presence is implied from the
expression size(values). This uses the Fortran intrinsic size
to compute the total number of elements in the array. It then passes
this value to the C wrapper:

Fortran usage:

use tutorial_mod
integer(C_INT) result
call sum([1,2,3,4,5], result)

Python usage. Since result is intent(out) it will be returned by the function.

import tutorial
result = tutorial.Sum([1, 2, 3, 4, 5])

See example Sum for generated code.

String

Character variables have significant differences between C and
Fortran. The Fortran interoperability with C feature treats a
character variable of default kind as an array of
character(kind=C_CHAR,len=1). The wrapper then deals with the C
convention of NULL termination to Fortran’s blank filled.

C++ routine:

const std::string ConcatenateStrings(
 const std::string& arg1,
 const std::string& arg2)
{
 return arg1 + arg2;
}

YAML input:

declarations:
- decl: const std::string ConcatenateStrings(
 const std::string& arg1,
 const std::string& arg2)

The function is called as:

character(len=:), allocatable :: rv4c

rv4c = concatenate_strings("one", "two")

Note

This function is just for demonstration purposes.
Any reasonable person would just use the concatenation operator in Fortran.

 Input

Input

The input to Shroud is a YAML formatted file.
YAML is a human friendly data serialization standard. [yaml]
Structure is shown through indentation (one or more spaces). Sequence
items are denoted by a dash, and key value pairs within a map are
separated by a colon:

library: Tutorial

declarations:
- decl: typedef int TypeID

- decl: void Function1()

- decl: class Class1
 declarations:
 - decl: void Method1()

Each decl entry corresponds to a line of C or C++ code. The top
level declarations field represents the source file while nested
declarations fields corresponds to curly brace blocks.
The above YAML file represent the source file:

typedef int TypeID;

void Function1();

class Class1
{
 void Method1();
}

A block can be used to group a collection of decl entires.
Any option or format fields will apply to all declarations in
the group:

declarations:
- block: True
 options:
 F_name_impl_template: {library}_{undescore_name}
 format:
 F_impl_filename: localfile.f
 declarations:
 - decl: void func1()
 - decl: void func2()

Shroud use curly braces for format strings.
If a string starts with a curly brace YAML
will interpret it as a map/dictionary instead of as part of the
string. To avoid this behavior, strings which start with a curly brace
should be quoted:

name : "{fmt}"

Strings may be split across several lines by indenting the continued line:

- decl: void Sum(int len, const int *values+rank(1),
 int *result+intent(out))

Some values consist of blocks of code. The pipe, |, is used to indicate that
the string will span several lines and that newlines should be preserved:

C_invalid_name: |
 if (! isNameValid({cxx_var})) {{
 return NULL;
 }}

Note that to insert a literal {, a double brace, {{, is
required since single braces are used for variable expansion.
{cxx_var} in this example.
However, using the pipe, it is not necessary to quote lines that
contain other YAML meta characters such as colon and curly braces.

For example, YAML will get confused by the :: characters and try
to create a dictionary with the key integer, parameter :.

splicer_code:
 f:
 module_top:
 - integer, parameter :: INDEXTYPE = 5

Literal newlines, /n, are respected. Line lengths are controlled
by the options C_line_length and F_line_length and default to 72.:

C_invalid_name: |
 if (! isNameValid({cxx_var})) {{+
 return NULL;
 -}}

The only formatting option is to control output line lengths. This is
required for Fortran which has a maximum line length of 132 in free
form which is generated by shroud. If you care where curly braces go
in the C source then it is best to set C_line_length to a large
number then use an external formatting tool such as indent or
uncrustify.

Customizing Behavior in the YAML file

Fields

A field only applies to the type, enumeration, function, structure or class
to which it belongs.
It is not inherited.
For example, cxx_header is a field which is used to define the header file
for class Names. Likewise, setting library within a class does not change
the library name.

library: testnames

declarations:
 - decl: class Names
 cxx_header: names.hpp
 declarations:
 - decl: void method1

Options

Options are used to customize the behavior of Shroud.
They are defined in the YAML file as a dictionary.
Options can be defined at the global, class, or function level.
Each level creates a new scope which can access all upper level options.
This allows the user to modify behavior for all functions or just a single one:

options:
 option_a = false
 option_b = false
 option_c = false

declarations:
- class: class1
 options:
option_a = false # inherited
 option_b = true
option_c = false # inherited
 declarations:
 - decl: void function1
 options:
option_a = false # inherited
option_b = true # inherited
 option_c = true

Format

A format dictionary contains strings which can be inserted into
generated code. Generated filenames are also entries in the format
dictionary. Format dictionaries are also scoped like options.
For example, setting a format in a class also effects all of the
functions within the class.

How code is formatted

Format strings contain “replacement fields” surrounded by curly braces
{}. Anything that is not contained in braces is considered literal
text, which is copied unchanged to the output. If you need to include
a brace character in the literal text, it can be escaped by doubling:
{{ and }}. [Python_Format]

There are some metacharacters that are used for formatting the line:

\f

Add an explicit formfeed

\t

A tab is used to suggest a place to break the line for a continuation
before it exceeds option C_line_length or F_line_length.
Any whitespace after a tab will be trimmed if the line is actually
split at the tab. If a continuation was not needed (there was enough
space on the current line) then the tab has no effect:

arg1,\t arg2

+ -

Increase or decrease indention indention level.
Used at the beginning or end of a line:

if (condition) {{+
do_one();
-}} else {{+
do_two();
-}}

The double curly braces are replace by a single curly.
This will be indented as:

if (condition) {
 do_one();
} else {
 do_two();
}

#

If the first character is a #, ignore indention and write in column 0.
Useful for preprocessing directives.

^

If the first character is ^, ignore indention and write in column 0.
Useful for comments or labels.

@

If the first character is @, treat the following character literally.
Used to ignore a metacharacter:

struct aa = {{++
0// set field to 0
@0,
-}};

Formatted as:

struct aa = {
// set field to 0
 0,
};

Attributes

Annotations or attributes apply to specific arguments or results.
They describe semantic behavior for an argument.
An attribute may be set to true by listing its name or
it may have a value in parens:

- decl: Class1() +name(new)
- decl: void Sum(int len, const int *values+rank(1)+intent(in))
- decl: const std::string getName() +len(30)

Attributes may also be added external to decl:

- decl: void Sum(int len, const int *values)
 attrs:
 values:
 intent: in
 rank: 1
- decl: const std::string getName()
 fattrs:
 len: 30

Attributes must be added before default arguments since
a default argument may include a plus symbol:

- decl: void Sum(int len, const int *values+rank(1)+intent(in) =nullptr)

api

Controls the API used by the C wrapper. The values are capi,
buf, capsule, capptr, cdesc and cfi.
Normally, this attribute is determined by Shroud
internally. Scalar native types such as int and double will
use capi since the argument can be passed directly to C using the
interoperability with C feature of Fortran.

Otherwise a ‘bufferify’ wrapper will also be created. Pointers to native and
char use additional metadata extracted by the Fortran wrapper via
intrinsics LEN and SIZE. In addition, intent(in) strings
will be copied and null-terminated. This uses api(buf).

cdesc will pass down a pointer to a struct which contains metadata
for the argument instead of passing additional fields. The advantage
is the struct can also be used to return metadata from the C wrapper
to the Fortran wrapper. The struct is named by the format fields
C_array_type and F_array_type.

The option F_CFI, will use the Further interoperability with C
features and pass CFI_cdesc_t arguments to the C where where the
metadata is extracted. This uses api(cfi).

The capsule and capptr APIs are used by the capsule created by
shadow types created for C++ classes. In both cases the result is
passed from Fortran to C as an extra argument for function which
return a class. With capptr, the C wrapper will return a pointer to
the capsule argument while capsule will not return a value for
the function. This is controlled by the C_shadow_result option.

There is currently one useful case where the user would want to set
this attribute. To avoid creating a wrapper which copies and null
terminates a char * argument the user can set api(capi). The
address of the formal parameter will be passed to the user’s library.
This is useful when null termination does not make sense. For example,
when the argument is a large buffer to be written to a file. The C
library must have some other way of determining the length of the
argument such as another argument with the explicit length.

assumedtype

When this attribute is applied to a void * argument, the Fortran
assumed-type declaration, type(*), will be used. Since Fortran
defaults to pass-by-reference, the argument will be passed to C as a
void * argument. The C function will need some other mechanism to
determine the type of the argument before dereferencing the pointer.
Note that assumed-type is part of Fortran 2018.

blanknull

Used with const char * arguments to convert a blank string to a
NULL pointer instead of an empty C string ('\0').
Can be applied to all arguments with the option F_blanknull.

capsule

Name of capsule argument.
Defaults to C_var_capsule_template.

cdesc

Pass argument from Fortran to C wrapper as a pointer to a context type.
This struct contains the address, type, rank and size of the argument.
A ‘bufferify’ function will be created for the context type.

charlen

charlen is used to define the size of a char *arg+intent(out)
argument in the Python wrapper. This deals with the case where arg
is provided by the user and the function writes into the provided
space. This technique has the inherent risk of overwritting memory if
the supplied buffer is not long enough. For example, when used in C
the user would write:

#define API_CHARLEN
char buffer[API_CHARLEN];
fill_buffer(buffer);

The Python wrapper must know the assumed length before calling the
function. It will then be converted into a str object by
PyString_FromString.

Fortran does not use this attribute since the buffer argument is
supplied by the user. However, it is useful to provide the parameter
by adding a splicer block in the YAML file:

splicer_code:
 f:
 module_top:
 - "integer, parameter :: MAXNAME = 20"

Warning

Using charlen and dimension together is not currently supported.

 Pointers and Arrays

Pointers and Arrays

Shroud will create code to map between C and Fortran pointers. The
interoperability with C features of Fortran 2003 and the
call-by-reference feature of Fortran provides most of the features
necessary to pass arrays to C++ libraries. Shroud can also provide
additional semantic information. Adding the rank attribute
will declare the argument as an assumed-shape array with the given
rank: +rank(2) creates arg(:,:). The +dimension(n) attribute
will instead give an explicit dimension: +dimension(10,20) creates
arg(10,20).

Using dimension on intent(in) arguments will use the dimension
shape in the Fortran wrapper instead of assumed-shape. This adds some
additional safety since many compiler will warn if the actual argument
is too small. This is useful when the C++ function has an assumed shape.
For example, it expects a pointer to 16 elements.
The Fortran wrapper will pass a pointer to contiguous memory with
no explicit shape information.

When a function returns a pointer, the default behavior of Shroud
is to convert it into a Fortran variable with the POINTER attribute
using c_f_pointer. This can be made explicit by adding
+deref(pointer) to the function declaration in the YAML file.
For example, int *getData(void) +deref(pointer) creates the Fortran
function interface

function get_data() result(rv)
 integer(C_INT), pointer :: rv
end function get_data

The result of the the Fortran function directly accesses the memory
returned from the C++ library.

An array can be returned by adding the dimension attribute to
the function. The dimension expression will be used to provide the
shape argument to c_f_pointer. The arguments to dimension
are C++ expressions which are evaluated after the C++ function is
called and can be the name of another argument to the function or a call
another C++ function. As a simple example, this declaration returns a
pointer to a constant sized array.

- decl: int *returnIntPtrToFixedArray(void) +dimension(10)

Example returnIntPtrToFixedArray
shows the generated code.

If the dimension is unknown when the function returns, a type(C_PTR)
can be returned with +deref(raw). This will allow the user
to call c_f_pointer once the shape is known.
Instead of a Fortran pointer to a scalar, a scalar can be returned
by adding +deref(scalar).

A common idiom for C++ is to return pointers to memory via arguments.
This would be declared as int **arg +intent(out). By default,
Shroud treats the argument similar to a function which returns a
pointer: it adds the deref(pointer) attribute to treats it as a
POINTER to a scalar. The dimension attribute can be used to
create an array similar to a function result.
If the deref(allocatable) attribute is added, then a Fortran array
will be allocated to the size of dimension attribute and the
argument will be copied into the Fortran memory.

A function which returns multiple layers of indirection will return
a type(C_PTR). This is also true for function arguments beyond
int **arg +intent(out).
This pointer can represent non-contiguous memory and Shroud
has no way to know the extend of each pointer in the array.

A special case is provided for arrays of NULL terminated strings,
char **. While this also represents non-contiguous memory, it is a
common idiom and can be processed since the length of each string can
be found with strlen.
See example acceptCharArrayIn.

In Python wrappers, Shroud will allocate intent(out) arguments
before calling the function. This requires the dimension attribute
which defines the shape and must be known before the function is
called. The argument will then be returned by the function along with
the function result and other intent(out) arguments. For example,
int **arg +intent(out)+dimension(n). The value of the dimension
attribute is used to define the shape of the array and must be known
before the library function is called. The dimension attribute can
include the Fortran intrinsic size to define the shape in terms of
another array.

char * functions are treated differently. By default deref
attribute will be set to allocatable. After the C++ function
returns, a CHARACTER variable will be allocated and the contents
copied. This will convert a NULL terminated string into the
proper length of Fortran variable.
For very long strings or strings with embedded NULL, deref(raw)
will return a type(C_PTR).

void * functions return a type(C_PTR) argument and cannot
have deref, dimension, or rank attributes.
A type(C_PTR) argument will be passed by value. For a void ** argument,
the type(C_PTR) will be passed by reference (the default). This
will allow the C wrapper to assign a value to the argument.
See example passVoidStarStar.

If the C++ library function can also provide the length of the
pointer, then its possible to return a Fortran POINTER or
ALLOCATABLE variable. This allows the caller to directly use the
returned value of the C++ function. However, there is a price; the
user will have to release the memory if owner(caller) is set. To
accomplish this with POINTER arguments, an additional argument is
added to the function which contains information about how to delete
the array. If the argument is declared Fortran ALLOCATABLE, then
the value of the C++ pointer are copied into a newly allocated Fortran
array. The C++ memory is deleted by the wrapper and it is the callers
responsibility to deallocate the Fortran array. However, Fortran
will release the array automatically under some conditions when the
caller function returns. If owner(library) is set, the Fortran
caller never needs to release the memory.

See Memory Management for details of the implementation.

A void pointer may also be used in a C function when any type may be
passed in. The attribute assumedtype can be used to declare a
Fortran argument as assumed-type: type(*).

- decl: int passAssumedType(void *arg+assumedtype)

function pass_assumed_type(arg) &
 result(SHT_rv) &
 bind(C, name="passAssumedType")
 use iso_c_binding, only : C_INT, C_PTR
 implicit none
 type(*) :: arg
 integer(C_INT) :: SHT_rv
end function pass_assumed_type

Memory Management

Shroud will maintain ownership of memory via the owner attribute.
It uses the value of the attribute to decided when to release memory.

Use owner(library) when the library owns the memory and the user
should not release it. For example, this is used when a function
returns const std::string & for a reference to a string which is
maintained by the library. Fortran and Python will both get the
reference, copy the contents into their own variable (Fortran
CHARACTER or Python str), then return without releasing any
memory. This is the default behavior.

Use owner(caller) when the library allocates new memory which is
returned to the caller. The caller is then responsible to release the
memory. Fortran and Python can both hold on to the memory and then
provide ways to release it using a C++ callback when it is no longer
needed.

For shadow classes with a destructor defined, the destructor will
be used to release the memory.

The c_statements may also define a way to destroy memory.
For example, std::vector provides the lines:

destructor_name: std_vector_{cxx_T}
destructor:
- std::vector<{cxx_T}> *cxx_ptr = reinterpret_cast<std::vector<{cxx_T}> *>(ptr);
- delete cxx_ptr;

Patterns can be used to provide code to free memory for a wrapped
function. The address of the memory to free will be in the variable
void *ptr, which should be referenced in the pattern:

declarations:
- decl: char * getName() +free_pattern(free_getName)

patterns:
 free_getName: |
 decref(ptr);

Without any explicit destructor_name or pattern, free will be
used to release POD pointers; otherwise, delete will be used.

C and Fortran

Fortran keeps track of C++ objects with the struct
C_capsule_data_type and the bind(C) equivalent
F_capsule_data_type. Their names in the format dictionary default to
{C_prefix}SHROUD_capsule_data and {C_prefix}SHROUD_capsule_data.
In the Tutorial these types are defined in typesTutorial.h as:

// helper capsule_CLA_Class1
struct s_CLA_Class1 {
 void *addr; /* address of C++ memory */
 int idtor; /* index of destructor */
};
typedef struct s_CLA_Class1 CLA_Class1;

And wrapftutorial.f:

! helper capsule_data_helper
type, bind(C) :: CLA_SHROUD_capsule_data
 type(C_PTR) :: addr = C_NULL_PTR ! address of C++ memory
 integer(C_INT) :: idtor = 0 ! index of destructor
end type CLA_SHROUD_capsule_data

addr is the address of the C or C++ variable, such as a char *
or std::string *. idtor is a Shroud generated index of the
destructor code defined by destructor_name or the free_pattern attribute.
These code segments are collected and written to function
C_memory_dtor_function. A value of 0 indicated the memory will not
be released and is used with the owner(library) attribute.

Each class creates its own capsule struct for the C wrapper.
This is to provide a measure of type safety in the C API.
All Fortran classes use the same derived type since the
user does not directly access the derived type.

A typical destructor function would look like:

// Release library allocated memory.
void TUT_SHROUD_memory_destructor(TUT_SHROUD_capsule_data *cap)
{
 void *ptr = cap->addr;
 switch (cap->idtor) {
 case 0: // --none--
 {
 // Nothing to delete
 break;
 }
 case 1: // new_string
 {
 std::string *cxx_ptr = reinterpret_cast<std::string *>(ptr);
 delete cxx_ptr;
 break;
 }
 default:
 {
 // Unexpected case in destructor
 break;
 }
 }
 cap->addr = nullptr;
 cap->idtor = 0; // avoid deleting again
}

Character and Arrays

In order to create an allocatable copy of a C++ pointer, an additional
structure is involved. For example, getConstStringPtrAlloc
returns a pointer to a new string. From strings.yaml:

declarations:
- decl: const std::string * getConstStringPtrAlloc() +owner(library)

The C wrapper calls the function and saves the result along with
metadata consisting of the address of the data within the
std::string and its length. The Fortran wrappers allocates its
return value to the proper length, then copies the data from the C++
variable and deletes it.

The metadata for variables are saved in the C struct C_array_type
and the bind(C) equivalent F_array_type.:

// helper array_context
struct s_STR_SHROUD_array {
 STR_SHROUD_capsule_data cxx; /* address of C++ memory */
 union {
 const void * base;
 const char * ccharp;
 } addr;
 int type; /* type of element */
 size_t elem_len; /* bytes-per-item or character len in c++ */
 size_t size; /* size of data in c++ */
 int rank; /* number of dimensions, 0=scalar */
 long shape[7];
};
typedef struct s_STR_SHROUD_array STR_SHROUD_array;

The union for addr makes some assignments easier by removing
the need for casts and also aids debugging.
The union is replaced with a single type(C_PTR) for Fortran:

! helper array_context
type, bind(C) :: STR_SHROUD_array
 ! address of C++ memory
 type(STR_SHROUD_capsule_data) :: cxx
 ! address of data in cxx
 type(C_PTR) :: base_addr = C_NULL_PTR
 ! type of element
 integer(C_INT) :: type
 ! bytes-per-item or character len of data in cxx
 integer(C_SIZE_T) :: elem_len = 0_C_SIZE_T
 ! size of data in cxx
 integer(C_SIZE_T) :: size = 0_C_SIZE_T
 ! number of dimensions
 integer(C_INT) :: rank = -1
 integer(C_LONG) :: shape(7) = 0
end type STR_SHROUD_array

The C wrapper does not return a std::string pointer. Instead it
passes in a C_array_type pointer as an argument. It calls
getConstStringPtrAlloc, saves the results and metadata into the
argument. This allows it to be easily accessed from Fortran.
Since the attribute is owner(library), cxx.idtor is set to 0
to avoid deallocating the memory.

void STR_getConstStringPtrAlloc_bufferify(
 STR_SHROUD_array *SHT_rv_cdesc)
{
 // splicer begin function.getConstStringPtrAlloc_bufferify
 const std::string * SHCXX_rv = getConstStringPtrAlloc();
 ShroudStrToArray(SHT_rv_cdesc, SHCXX_rv, 0);
 // splicer end function.getConstStringPtrAlloc_bufferify
}

The Fortran wrapper uses the metadata to allocate the return argument
to the correct length:

function get_const_string_ptr_alloc() &
 result(SHT_rv)
 character(len=:), allocatable :: SHT_rv
 ! splicer begin function.get_const_string_ptr_alloc
 type(STR_SHROUD_array) :: SHT_rv_cdesc
 call c_get_const_string_ptr_alloc_bufferify(SHT_rv_cdesc)
 allocate(character(len=SHT_rv_cdesc%elem_len):: SHT_rv)
 call STR_SHROUD_copy_string_and_free(SHT_rv_cdesc, SHT_rv, &
 SHT_rv_cdesc%elem_len)
 ! splicer end function.get_const_string_ptr_alloc
end function get_const_string_ptr_alloc

Finally, the helper function SHROUD_copy_string_and_free is called
to set the value of the result and possible free memory for
owner(caller) or intermediate values:

// helper copy_string
// Copy the char* or std::string in context into c_var.
// Called by Fortran to deal with allocatable character.
void STR_ShroudCopyStringAndFree(STR_SHROUD_array *data, char *c_var, size_t c_var_len) {
 const char *cxx_var = data->addr.ccharp;
 size_t n = c_var_len;
 if (data->elem_len < n) n = data->elem_len;
 std::strncpy(c_var, cxx_var, n);
 STR_SHROUD_memory_destructor(&data->cxx); // delete data->cxx.addr
}

Note

The three steps of call, allocate, copy could be replaced
with a single call by using the further interoperability
with C features of Fortran 2018 (a.k.a TS 29113). This
feature allows Fortran ALLOCATABLE variables to be
allocated by C. However, not all compilers currently support
that feature. The current Shroud implementation works with
Fortran 2003.

 Types

Types

Numeric Types

The numeric types usually require no conversion.
In this case the type map is mainly used to generate declaration code
for wrappers:

type: int
fields:
 c_type: int
 cxx_type: int
 f_type: integer(C_INT)
 f_kind: C_INT
 f_module:
 iso_c_binding:
 - C_INT
 f_cast: int({f_var}, C_INT)

One case where a conversion is required is when the Fortran argument
is one type and the C++ argument is another. This may happen when an
overloaded function is generated so that a C_INT or C_LONG
argument may be passed to a C++ function function expecting a
long. The f_cast field is used to convert the argument to the
type expected by the C++ function.

Bool

The first thing to notice is that f_c_type is defined. This is
the type used in the Fortran interface for the C wrapper. The type
is logical(C_BOOL) while f_type, the type of the Fortran
wrapper argument, is logical.

The f_statements section describes code to add into the Fortran
wrapper to perform the conversion. c_var and f_var default to
the same value as the argument name. By setting c_local_var, a
local variable is generated for the call to the C wrapper. It will be
named SH_{f_var}.

There is no Fortran intrinsic function to convert between default
logical and logical(C_BOOL). The pre_call and
post_call sections will insert an assignment statement to allow
the compiler to do the conversion.

If a function returns a bool result then a wrapper is always needed
to convert the result. The result section sets need_wrapper
to force the wrapper to be created. By default a function with no
argument would not need a wrapper since there will be no pre_call
or post_call code blocks. Only the C interface would be required
since Fortran could call the C function directly.

See example checkBool.

Char

Any C++ function which has char or std::string arguments or
result will create an additional C function which include additional
arguments for the length of the strings. Most Fortran compiler use
this convention when passing CHARACTER arguments. Shroud makes
this convention explicit for two reasons:

	It allows an interface to be used. Functions with an interface will
not pass the hidden, non-standard length argument, depending on compiler.

	Returning character argument from C to Fortran is non-portable.

The C wrapper will create a NULL terminated copy a string with the
intent(in) attribute. The assumption is that the trailing blanks
are not part of the data but only padding. Return values and
intent(out) arguments add a len annotation with the assumption
that the wrapper will copy the result and blank fill the argument so
it need to know the declared length.

A buffer for intent(out) arguments is also create which is one
longer than the Fortran string length. This allows space for a C
terminating NULL. This buffer is passed to the C library which will
copy into it. Upon return, the buffer is copied and blank filled into
the user’s argument and the intermediate buffer released.

Library functions which return a scalar char have a wrapper generated
which pass a char * argument to the C wrapper where the first
element is assigned (*arg a.k.a arg[0]). Returning a char
proved to be non-portable while passing the result by reference works
on the tested compilers.

The bufferify function will be named the same as the original
function with the option C_bufferify_suffix appended to the end.
The Fortran wrapper will use the original function name, but call the
C wrapper which accepts the length arguments.

Python wrappers may need an additional attribute for intent(out)
strings to let Shroud know how much space to pass to the function. A
function may pass a char * argument which the C library will copy
into. While this is not a recommened practice since it’s easy to
overwrite memory, Shoud can deal with it by setting the +charlen(n)
attribute where n is the number of character in the array passed to
the function. This is required for Python since strings are inmutable.
The buffer will be converted into a Python str object then returned to
the user. This is not an issue in Fortran since the output buffer is
passed in by the caller and will have a known size.

By default, a Fortran blank input string will be converted to an empty
string before being passed to the C library. i.e. " " in Fortran
is converted to '\0' in C. This behavior can be changed to convert
the empty string into a NULL pointer by setting the +blanknull
attribute. This is often more natural for the C library to indicate the
absence of a value. The option F_blanknull can be used to make this the
default for all const char * arguments.

On some occasions the copy and null terminate behavior is not wanted.
For example, to avoid copying a large buffer or the memory must be
operated on directly. In this case using the attribute +api(capi)
will use the native C API instead of the bufferify API for the
argument. The library will need some way to determine the length of
the string since it will not be passed to the C wrapper. As an
alternative the bufferify function can be avoided altogether by
setting the F_create_bufferify_function option to false.

The character type maps use the c_statements section to define
code which will be inserted into the C wrapper. These actions vary
depending on the intent of in, out, inout and result.

MPI_Comm

MPI_Comm is provided by Shroud and serves as an example of how to wrap
a non-native type. MPI provides a Fortran interface and the ability
to convert MPI_comm between Fortran and C. The type map tells Shroud
how to use these routines:

type: MPI_Comm
fields:
 cxx_type: MPI_Comm
 c_header: mpi.h
 c_type: MPI_Fint
 f_type: integer
 f_kind: C_INT
 f_c_type: integer(C_INT)
 f_c_module:
 iso_c_binding:
 - C_INT
 cxx_to_c: MPI_Comm_c2f({cxx_var})
 c_to_cxx: MPI_Comm_f2c({c_var})

This mapping makes the assumption that integer and
integer(C_INT) are the same type.

 Namespaces

Namespaces

Namespaces in C++ are used to ensure the symbols in a library will not
conflict with any symbols in another library. Fortran and Python both
use a module to accomplish the same thing.

The global variable namespace is a blank delimited list of
namespaces used as the initial namespace. This namespace will be used
when accessing symbols in the library, but it will not be used when
generating names for wrapper functions.

For example, the library wrapped is associated with the namespace
outer. There are three functions all with the same name,
worker. In C++ these functions are accessed by using a fully
qualified name: outer::worker, outer::innter1::worker and
outer::inner2::worker.

namespace outer {
 namespace inner1 {
 void worker();
 } // namespace inner1

 namespace inner2 {
 void worker();
 } // namespace inner2

 void worker();
} // namespace outer

The YAML file would look like:

library: wrapped
namespace: outer
format:
 C_prefix: WWW_

declarations:
- decl: namespace inner1
 declarations:
 - decl: void worker();
- decl: namespace inner2
 declarations:
 - decl: void worker();
- decl: void worker();

For each namespace, Shroud will generate a C++ header file, a C++
implementation file, a Fortran file and a Python file.
The nested namespaces are added to the format field C_name_scope.

For the C wrapper, all symbols are globally visible and must be
unique. The format fields C_prefix and C_name_scope are used to
generate the names. This will essentially “flatten” the namespaces into
legal C identifiers.

void WWW_worker();
void WWW_inner1_worker();
void WWW_inner2_worker();

In Fortran each namespace creates a module. Each module will have
a function named worker. This makes the user responsible for distinguising
which implementation of worker is to be called.

subroutine work1
 ! Use a single module, unambiguous
 use wrapped_mod
 call worker
end subroutine work1

subroutine work2
 ! Rename symbol from namespace inner1
 use wrapped_mod
 use wrapped_inner1_mod, inner_worker => worker
 call worker
 call inner_worker
end subroutine work2

Each namespace creates a Python module.

import wrapped
wrapped.worker()
wrapped.inner1.worker()

Several fields in the format dictionary are updated for each namespace:
namespace_scope, C_name_scope, F_name_scope.

std namespace

Shroud has builtin support for std::string and std::vector.

 Structs and Classes

Structs and Classes

All problems in computer science can be solved by
another level of indirection.
— David Wheeler

While structs and classes are very similar in C++, Shroud wraps them
much differently. Shroud treats structs as they are in C and creates
a corresponding derived type for the struct. Shroud wraps classes by
creating a shadow class which holds a pointer to the instance
then uses Fortran type bound procedures to implement methods.

Class

Classes are wrapped by creating a shadow class for the C++ class.
A pointer to an instances is saved along with a memory management flag.

Using the tutorial as an example, a simple class is defined in the C++
header as:

class Class1
{
public:
 void Method1() {};
};

And is wrapped in the YAML as:

declarations:
- decl: class Class1
 declarations:
 - decl: int Method1()
 - decl: Class1()
 format:
 function_suffix: _default
 - decl: Class1(int flag)
 format:
 function_suffix: _flag
 - decl: ~Class1() +name(delete)

While C++ will provide a default constructor and destructor, they must
be listed explicitly to wrap them. They are not assumed since they
may be private. The default name of the constructor is ctor. The
name can be specified with the name attribute. If the constructor
is overloaded, each constructor must be given the same name
attribute.

The function_suffix is added to distinguish overloaded constructors.
The default is to have a sequential numeric suffix. The
function_suffix must not be explicitly set to blank since the name
is used by the Fortran generic interface.

If no constructor is wrapped, then some other factory method
should be available to create instances of the class. There is no way
to create it directly from Fortran.

When the constructor is wrapped the destructor should also be wrapper
or some other method should be wrapped to release the memory.

C

Each class in the YAML file will create a struct in the C wrapper.
All of these structs are identical but are named after the class.
This is intended to provide some level of type safety by making it
harder to accidently use the wrong class with a method.
Shroud refers to this as a capsule.

// helper capsule_CLA_Class1
struct s_CLA_Class1 {
 void *addr; /* address of C++ memory */
 int idtor; /* index of destructor */
};
typedef struct s_CLA_Class1 CLA_Class1;

The C wrapper will extract the address of the instance then call the
method.

int CLA_Class1_Method1(CLA_Class1 * self)
{
 classes::Class1 *SH_this = static_cast<classes::Class1 *>
 (self->addr);
 // splicer begin class.Class1.method.Method1
 int SHC_rv = SH_this->Method1();
 return SHC_rv;
 // splicer end class.Class1.method.Method1
}

All constructors are very similar. They call the C++ constructor then
saves the pointer to the instance. The idtor field is the index of
the destructor maintained by Shroud to destroy the instance.

CLA_Class1 * CLA_Class1_ctor_flag(int flag, CLA_Class1 * SHC_rv)
{
 // splicer begin class.Class1.method.ctor_flag
 classes::Class1 *SHCXX_rv = new classes::Class1(flag);
 SHC_rv->addr = static_cast<void *>(SHCXX_rv);
 SHC_rv->idtor = 1;
 return SHC_rv;
 // splicer end class.Class1.method.ctor_flag
}

Finally the wrapper for the destructor.
The addr field is cleared to avoid a dangling pointer.

void CLA_Class1_delete(CLA_Class1 * self)
{
 classes::Class1 *SH_this = static_cast<classes::Class1 *>
 (self->addr);
 // splicer begin class.Class1.method.delete
 delete SH_this;
 self->addr = nullptr;
 // splicer end class.Class1.method.delete
}

A function which returns a class, including constructors, is passed a
pointer to a F_capsule_data_type. The argument’s members are filled
in by the function. The function will return a type(C_PTR) which
contains the address of the F_capsule_data_type argument. The
prototype for the C wrapper function allows it to be used in
expressions similar to the way that strcpy returns its destination
argument. The option C_shadow_result can be set to False to
change the function to return void instead.
The Fortran wrapper API will be uneffected.

C++ functions which return const pointers will not create a const
C wrapper. This is because the C wapper will return a pointer to the
capsule and not the instance.

Fortran

The Fortran wrapper uses the object-oriented features added in
Fortran 2003. There is one derived type for the library which is
used as the capsule. This derived type uses bind(C) since it is
passed to the C wrapper. Each class uses the same capsule derived type
since it is considered an implementation detail and the user should
not access it. Then each class creates an additional derived type as
the shadow class which contains a capsule and has type-bound
procedures associated with it.

! helper capsule_data_helper
type, bind(C) :: CLA_SHROUD_capsule_data
 type(C_PTR) :: addr = C_NULL_PTR ! address of C++ memory
 integer(C_INT) :: idtor = 0 ! index of destructor
end type CLA_SHROUD_capsule_data

The capsule is added to the Fortran shadow class. This derived type
can contain type-bound procedures and may not use the bind(C)
attribute.

type class1
 type(SHROUD_CLA_capsule_data) :: cxxmem
contains
 procedure :: delete => class1_delete
 procedure :: method1 => class1_method1
end type class1

The wrapper for the method passes the object as the first argument.
The argument uses the format field F_this to name the variable and
defaults to obj. It can be renamed if it conflicts with
another argument.

function class1_method1(obj) &
 result(SHT_rv)
 use iso_c_binding, only : C_INT
 class(class1) :: obj
 integer(C_INT) :: SHT_rv
 ! splicer begin class.Class1.method.method1
 SHT_rv = c_class1_method1(obj%cxxmem)
 ! splicer end class.Class1.method.method1
end function class1_method1

A generic interface with the same name as the class is created to call
the constructors for the class. The constructor will initialize the
Fortran shadow class.

interface class1
 module procedure class1_ctor_default
 module procedure class1_ctor_flag
end interface class1

The Fortran wrapped class can be used very similar to its C++ counterpart.

use classes_mod
type(class1) var ! Create Fortran variable.
integer(C_INT) i
var = class1() ! Allocate C++ class instance.
i = var%method1()
call var%delete

Some additional type-bound procedures are created to allow the user to
get and set the address of the C++ memory directly. This can be used
when the address of the instance is created in some other manner and
it needs to be used in Fortran. There is no way to free this memory
and it must be released outside of Fortran.

For example, a C++ function creates an instance then passes the
address of it to Fortran function worker. The shadow class is
initialized with the address and can then be used in an object-oriented
fashion:

subroutine worker(addr) bind(C)
use classes_mod
type(C_PTR), intent(IN) :: addr
type(class1) var
integer(C_INT) i

call var%set_instance(addr)
i = var%method1()

Two instances of the class can be compared using the associated method.

type(class1) var1, var2
var1 = get_class(1) ! A library function to fetch an instance
var2 = get_class(2)
if (var1%associated(var2) then
 print *, "Identical instances"
endif

These functions names are controlled by format fields F_name_associated,
F_name_instance_get and F_name_instance_set.
If the names are blank, the functions will not be created.

The .eq. operator is also defined.

A full example is at
Constructor and Destructor.

Python

An PyObject is created for each C++ class.
It constains the same values as the capsule.

typedef struct {
PyObject_HEAD
 classes::Class1 * obj;
 int idtor;
 // splicer begin class.Class1.C_object
 // splicer end class.Class1.C_object
} PY_Class1;

The idtor argument is used to release memory and described at
Memory Management. The splicer allows additional fields
to be added by the developer which may be used in function wrappers.

Additional fields can be added to the splicer for custom behavior.

Chained functions

C++ allows function calls to be chained by returning the this argument.
Several functions can be called in succession on the same object.

auto var = Class1()->returnThis()

The return_this field indicates that the function may be chained
so the wrapper can generate appropriate code.

 - decl: Class1 * returnThis();
 return_this: True

C

The C wrapper returns void instead of a pointer to the this argument.

void CLA_Class1_returnThis(CLA_Class1 * self)
{
 classes::Class1 *SH_this = static_cast<classes::Class1 *>
 (self->addr);
 // splicer begin class.Class1.method.returnThis
 SH_this->returnThis();
 // splicer end class.Class1.method.returnThis
}

Fortran

Fortran does not permit his behavior.
The function is treated as a subroutine.

subroutine class1_return_this(obj)
 class(class1) :: obj
 ! splicer begin class.Class1.method.return_this
 call c_class1_return_this(obj%cxxmem)
 ! splicer end class.Class1.method.return_this
end subroutine class1_return_this

The chaining must be done as a sequence of calls.

use classes_mod
type(class1) var

var = class1()
call var%return_this()

Class static methods

To wrap the method:

class Singleton {
 static Singleton& getReference();
};

Use the YAML input:

- decl: class Singleton
 declarations:
 - decl: static Singleton& getReference()

Fortran

Class static methods are supported using the NOPASS keyword in Fortran.

type singleton
 type(CLA_SHROUD_capsule_data) :: cxxmem
 ! splicer begin class.Singleton.component_part
 ! splicer end class.Singleton.component_part
contains
 procedure, nopass :: get_reference => singleton_get_reference
 ! splicer begin class.Singleton.type_bound_procedure_part
 ! splicer end class.Singleton.type_bound_procedure_part
end type singleton

Called from Fortran as:

type(singleton) obj0
obj0 = obj0%get_reference()

Note that obj0 is not assigned a value before the function get_reference is called.

Class Inheritance

Class inheritance is supported.
Note that the subclass declaration uses a colon and must be quoted. Otherwise
YAML will treat it as another mapping entry.

- decl: class Shape
 declarations:
 - decl: Shape()
 - decl: int get_ivar() const

- decl: "class Circle : public Shape"
 declarations:
 - decl: Circle()

Fortran

Inheritance is implemented using the EXTENDS Fortran
keyword. Only single inheritance is supported.

type shape
 type(CLA_SHROUD_capsule_data) :: cxxmem
contains
 procedure :: get_ivar => shape_get_ivar
end type shape

type, extends(shape) :: circle
end type circle

Python

Python uses the PyTypeObject.tp_base field.

Forward Declaration

A class may be forward declared by omitting declarations.
All other fields, such as format and options must be provided
on the initial decl of a Class.
This will define the type and allow it to be used in following declarations.
The class’s declarations can be added later:

declarations:
- decl: class Class1
 options:
 foo: True

- decl: class Class2
 declarations:
 - decl: void accept1(Class1 & arg1)

- decl: class Class1
 declarations:
 - decl: void accept2(Class2 & arg2)

Member Variables

For each member variable of a C++ class a C and Fortran wrapper
function will be created to get or set the value. The Python wrapper
will create a descriptor. It is not necessary to list all members of
the class, only the one which are to be exposed in the wrapper.
private members cannot be wrapped.

class Class1
{
public:
 int m_flag;
 int m_test;
};

It is added to the YAML file as:

- decl: class Class1
 declarations:
 - decl: int m_flag +readonly;
 - decl: int m_test +name(test);

The readonly attribute will not create the setter function or descriptor.
Python will report:

>>> obj = tutorial.Class1()
>>> obj.m_flag =1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: attribute 'm_flag' of 'tutorial.Class1' objects is not writable

The name attribute will change the name of generated functions and
descriptors. This is helpful when using a naming convention like
m_test and you do not want m_ to be used in the wrappers.

The names of these functions are controlled by the options
SH_class_getter_template and SH_class_setter_template.
They are added as additional methods on the class.

For wrapping details see
Getter and Setter.

The getter and setter for a member which is a pointer to a native type
can use a Fortran pointer if the member is given the dimension
attribute.

- decl: class PointerData
 declarations:
 - decl: int nitems;
 - decl: int *items +dimension(nitems);

Notice that the dimension uses another field in the class.
This will create a getter which can be called from Fortran.
Likewise, the setter will require an argument of the same rank as
the dimension attribute.

type(PointerData) var
integer(C_INT) :: nitems
integer(C_INT), pointer :: items(:)
integer(C_INT) :: updated(10)

var = PointerData()
nitems = var%get_nitems()
items => var%get_items()

call var%set_items(updated)
var%nitems = size(updated) ! keep nitems and items consistent

The user must be consistent in the use of the getter and setter. For
example, item is nitems long, but if the setter assigns an
array which is shorter, the next call to the getter will still create
a Fortran pointer which is nitems long.

Another point to note is that the variable updated should have the
TARGET attribute since we’re saving its address in var.

Struct

Shroud supports both structs and classes. But it treats them much
differently. Whereas in C++ a struct and class are essentially the
same thing, Shroud treats structs as a C style struct. They do not
have associated methods. This allows them to be mapped to a Fortran
derived type with the bind(C) attribute and a Python NumPy array.

For wrapping purposes, a struct is a C++ class without a vtable. It
will contain POD types. Unlike classes where all member variables do
not need to be wrapped, a struct should be fully defined. This is
necessary to allow an array of structs to be created in the wrapper
language then passed to C++.

A struct is defined in the yaml file as:

- decl: struct Cstruct1
 declarations:
 - decl: int ifield;
 - decl: double dfield;

It can also be defined as one decl entry:

- decl: struct Cstruct1 {
 int ifield;
 double dfield;
 };

The struct statement can can also be used to declare a variable of
a previously defined structure. This is required for C but is
optional for C++ where a struct statement defines a type. To
distinguish a variable declaration from a struct declaration, the
trailing semicolon is required.

- decl: struct Cstruct1 var;

Fortran

This is translated directly into a Fortran derived type with the
bind(C) attribute.

type, bind(C) :: cstruct1
 integer(C_INT) :: ifield
 real(C_DOUBLE) :: dfield
end type cstruct1

All creation and access of members can be done using Fortran.

type(cstruct1) st(2)

st(1)%ifield = 1_C_INT
st(1)%dfield = 1.5_C_DOUBLE
st(2)%ifield = 2_C_INT
st(2)%dfield = 2.6_C_DOUBLE

Python

Python can treat a struct in several different ways by setting option
PY_struct_arg.
First, treat it the same as a class. An extension type is created with
descriptors for the field methods. Second, as a numpy descriptor.
This allows an array of structs to be used easily.
Finally, as a tuple of Python objects.

When treated as a class, a constructor is created which will
create an instance of the class. This is similar to the
default constructor for structs in C++ but will also work
with a C struct.

import cstruct
a = cstruct.Cstruct1(1, 2.5)
a = cstruct.Cstruct1()

When treated as a NumPy array no memory will be copied since the
NumPy array contains a pointer to the C++ memory.

import cstruct
dt = cstruct.Cstruct1_dtype
a = np.array([(1, 1.5), (2, 2.6)], dtype=dt)

The descriptor is created in the wrapper
NumPy Struct Descriptor.

Member Variables

Generally, getter and setter functions are not required since Fortran
can directly access the member fields. But when the member is a
pointer it is more convient to have a getter and setter which works
with Fortran pointers.

struct PointerData
{
 int nitems;
 int *items;
};

The generated getter and setter are not type-bound functions and must
be passed the struct variable:

type(PointerData) var
integer(C_INT) :: nitems
integer(C_INT) :: items(10)
integer(C_INT), pointer :: out(:)

var%nitems = 10
call pointerdata_set_items(var, items)

out => pointerdata_get_items(var)

The names of these functions are controlled by the options
SH_struct_getter_template and SH_struct_setter_template.
They are added to the same scope as the struct.

Option F_struct_getter_setter can be set to false to avoid
creating the getter and setter functions.

Object-oriented C

Object oriented programing is a model and not a language feature.
This model has been used for years in C by creating a struct for the
object, then functions for the methods. C++ will implicitly pass the
this argument. C methods explicitly pass the struct as an
argument. Fortran and Python both pass an explicit object then wrap it
in syntacatic sugar to allow a self.method() syntax to be used.
Shroud allows a struct and collection of functions to be treated as a
class.

First, define a struct and set the wrap_struct_as options to class.

- decl: struct Cstruct_as_class {
 int x1;
 int y1;
 };
 options:
 wrap_struct_as: class

Create a constructor function.
The class_ctor options associates this with the struct.

- decl: Cstruct_as_class *Create_Cstruct_as_class(void)
 options:
 class_ctor: Cstruct_as_class

Then add methods. The class_method option associates this with the
struct. The format field F_name_function is used to name the
method. The default method name is the same as the function name.
But since this name will be used in the context of the object, it can
be much shorter. The pass attribute marks this as the ‘object’.

- decl: int Cstruct_as_class_sum(const Cstruct_as_class *point +pass)
 options:
 wrap_python: False
 class_method: Cstruct_as_class
 format:
 F_name_function: sum

Additonal options are wrap_class_as and class_baseclass.

Fortran

A shadow class is created for the struct.
This is the same as wrapping a C++ class.
Getters and setters are created for the member variable.
And the sum method is added.

type cstruct_as_class
 type(STR_SHROUD_capsule_data) :: cxxmem
 ! splicer begin class.Cstruct_as_class.component_part
 ! splicer end class.Cstruct_as_class.component_part
contains
 procedure :: get_x1 => cstruct_as_class_get_x1
 procedure :: set_x1 => cstruct_as_class_set_x1
 procedure :: get_y1 => cstruct_as_class_get_y1
 procedure :: set_y1 => cstruct_as_class_set_y1
 procedure :: sum => cstruct_as_class_sum
 ! splicer begin class.Cstruct_as_class.type_bound_procedure_part
 ! splicer end class.Cstruct_as_class.type_bound_procedure_part
end type cstruct_as_class

Now the struct is treated as a class in the Fortran wrapper.

use struct_mod
type(cstruct_as_class) var ! Create Fortran variable.
integer(C_INT) i
var = cstruct_as_class() ! Create struct in C++.
i = var%sum()

Similar to Python, Fortran passes the object as an explicit argument.
Unlike C++ which uses an implicit this variable.
By default, the first argument of the function is assumed to be the object.
However, this can be changed using the pass attribute. This will add the
Fortran keyword PASS to the corresponding argument.

A full example is at
Struct as a Class.

 Default Arguments

Default Arguments

Default arguments allows a C++ function to be called without providing
one or more trailing arguments. Shroud can handle default args in
several different ways based on the value of option F_default_args.

Generic Default Arguments

Since a default argument can have any C++ value, the C++ compiler must
be used to provide the values. Shroud does this by creating a function
for each possible way to call the function. These functions are then
combined into a generic interface with the C++ function name.
This is the default behavior of Shroud but can be made explicit
by setting option F_default_args to generic.

For example, the function

void apply(IndexType num_elems, IndexType offset = 0, IndexType stride = 1);

can be called with 1, 2 or 3 arguments. C wrapper functions are
created with the prototypes:

void apply(IndexType num_elems);
void apply(IndexType num_elems, IndexType offset);
void apply(IndexType num_elems, IndexType offset, IndexType stride);

The C++ compiler will provided the missing arguments using the default
values.

The generated functions will have the same name as the C++ function
with a suffix added to create unique names. By default this is a
integer sequence number. The suffix can be controlled by adding a
default_arg_suffix entry to the YAML file. One suffix is provided
for each generated overloaded function.

- decl: void apply(IndexType num_elems, IndexType offset = 0, IndexType stride = 1);
 default_arg_suffix:
 - _nelems
 - _nelems_offset
 - _nelems_offset_stride

Require Default Arguments

Shroud provides the option to require all arguments by setting
F_default_args to require. This is intended to help when there
are overloaded functions with default arguments. The Fortran type
system is not a rich as C++ and some Fortran generic function may be
ambiguous. This can happen since C++ enum is converted to an
integer.

Optional Default Arguments

When the default values can be represented in Fortran the OPTIONAL
attribute can be used with default arguments to allow the Fortran
wrapper to supply the value for arguments which are not present in the
call to the function. This is generated when the option
F_default_args is set to optional.
No overloaded functions are generated.
The C wrapper will require all arguments to be provided.

This provides the ability to call the function from Fortran in a way
not supported by C++. Each argument can be provided individually
using keyword arguments. The function can be called as

call apply(100, stride=2)

and offset will be provided the default value of 0.

Since the value is provided by Fortran, this only works with
integer and real values.

 Templates

Templates

Shroud will wrap templated classes and functions for explicit instantiations.
The template is given as part of the decl and the instantations are listed in the
cxx_template section:

- decl: |
 template<typename ArgType>
 void TemplateArgument(ArgType arg)
 cxx_template:
 - instantiation: <int>
 - instantiation: <double>

options and format may be provide to control the generated code:

- decl: template<typename T> class vector
 cxx_header: <vector>
 cxx_template:
 - instantiation: <int>
 format:
 C_impl_filename: wrapvectorforint.cpp
 options:
 optblah: two
 - instantiation: <double>

For a class template, the class_name is modified to included the
instantion type. If only a single template parameter is provided,
then the template argument is used. For the above example,
C_impl_filename will default to wrapvector_int.cpp but has been
explicitly changed to wrapvectorforint.cpp.

Functions can be created which return a templated class:

- decl: vector<int> getVector()

The result type must be instantiated via the cxx_template block before
it can be used.

 Declarations

Declarations

In order for Shroud to create an idiomatic wrapper, it needs to know
how arguments are intended to be used. This information is supplied
via attributes. This section describes how to describe the arguments
to Shroud in order to implement the desired semantic.

No Arguments

A C function with no arguments and which does not return a value, can
be “wrapped” by creating a Fortran interface which allows the function
to be called directly. A C++ function will require an extern C
function to create an C wrapper to deal with the C++ name mangling.

An example is detailed at NoReturnNoArguments.

Numeric Arguments

Integer and floating point numbers are supported by the
interoperabilty with C feature of Fortran 2003. This includes the
integer types short, int, long and long long.
Size specific types int8_t, int16_t, int32_t, and
int64_t are also supported.
Floating point types are float and double.

Note

Fortran has no support for unsigned types.
size_t will be the correct number of bytes, but
will be signed.

 Output

Output

What files are created

Shroud will create multiple output file which must be compiled with
C++ or Fortran compilers.

One C++ file will be created for the library and one file for each C++ class.
In addition a utility file will be created with routines which are
implemented in C but called from Fortran. This includes some memory
management routines.

Fortran creates a file for the library and one per additional namespace.
Since Fortran does not support forward referencing of derived types,
it is necessary to add all classes from a namespace into a single module.

Each Fortran file will only contain one module to make it easier to
create makefile dependencies using pattern rules:

%.o %.mod : %.f

File names for the header and implementation files can be set
explicitly by setting variables in the format of the global or class scope:

format:
 C_header_filename: top.h
 C_impl_filename: top.cpp
 F_impl_filename: top.f

declarations:
- decl: class Names
 format:
 C_header_filename: foo.h
 C_impl_filename: foo.cpp
 F_impl_filename: foo.f

The default file names are controlled by global options.
The option values can be changed to avoid setting the name for
each class file explicitly.
It’s also possible to change just the suffix of files:

options:
 YAML_type_filename_template: {library_lower}_types.yaml

 C_header_filename_suffix: h
 C_impl_filename_suffix: cpp
 C_header_filename_library_template: wrap{library}.{C_header_filename_suffix}
 C_impl_filename_library_template: wrap{library}.{C_impl_filename_suffix}

 C_header_filename_namespace_template: wrap{file_scope}.{C_header_file_suffix}
 C_impl_filename_namespace_template: wrap{file_scope}.{C_impl_filename_suffix}

 C_header_filename_class_template: wrap{cxx_class}.{C_header_file_suffix}
 C_impl_filename_class_template: wrap{cxx_class}.{C_impl_filename_suffix}

 F_filename_suffix: f
 F_impl_filename_library_template: wrapf{library_lower}.{F_filename_suffix}
 F_impl_filename_namespace_template: wrapf{file_scope}.{F_filename_suffix}

A file with helper functions may also be created.
For C the file is named by the format field C_impl_utility.
It contains files which are implemented in C but are called from Fortran
via BIND(C).

How names are created

Shroud attempts to provide user control of names while providing
reasonable defaults.
Each name is based on the library, class, function or argument name
in the current scope. Most names have a template which may be used
to control how the names are generated on a global scale. Many names
may also be explicitly specified by a field.

For example, a library has an initialize function which is
in a namespace. In C++ it is called as:

#include "library.hpp"

library::initialize()

By default this will be a function in a Fortran module and
can be called as:

use library

call initialize

Since initialize is a rather common name for a function, it may
be desirable to rename the Fortran wrapper to something more specific.
The name of the Fortran implementation wrapper can be changed
by setting F_name_impl:

library: library

declarations:
- decl: namespace library
 declarations:
 - decl: void initialize
 format:
 F_name_impl: library_initialize

To rename all functions, set the template in the toplevel options:

library: library

options:
 F_name_impl_template: "{library}_{underscore_name}{function_suffix}"

declarations:
- decl: namespace library
 declarations:
 - decl: void initialize

C++ allows allows overloaded functions and will mangle the names
behind the scenes. With Fortran, the mangling must be explicit. To
accomplish this Shroud uses the function_suffix format string. By
default, Shroud will use a sequence number. By explicitly setting
function_suffix, a more meaningful name can be provided:

- decl: void Function6(const std::string& name)
 format:
 function_suffix: _from_name
- decl: void Function6(int indx)
 format:
 function_suffix: _from_index

This will create the Fortran functions function6_from_name and
function6_from_index. A generic interface named function6
will also be created which will include the two generated functions.

Likewise, default arguments will produce several Fortran wrappers and
a generic interface for a single C++ function. The format dictionary
only allows for a single function_default per function. Instead the
field default_arg_suffix can be set. It contains a list of
function_suffix values which will be applied from the minimum to the
maximum number of arguments:

- decl: int overload1(int num,
 int offset = 0, int stride = 1)
 default_arg_suffix:
 - _num
 - _num_offset
 - _num_offset_stride

Finally, multiple Fortran wrappers can be generated from a single
templated function. Each instantiation will generate an additional
Fortran Wrapper and can be distinguished by the template_suffix
entry of the format dictionary.

If there is a single template argument, then template_suffix will be
set to the flat_name field of the instantiated argument. For
example, <int> defaults to _int. This works well for POD types.
The entire qualified name is used. For <std::string> this would be
std_string. Classes which are deeply nested can produce very long
values for template_suffix. To deal with this, the
function_template field can be set on Class declarations:

- decl: namespace internal
 declarations:
 - decl: class ImplWorker1
 format:
 template_suffix: instantiation3

By default internal_implworker1 would be used for the
template_suffix. But in this case instantiation3 will be used.

For multiple template arguments, template_suffix defaults to a
sequence number to avoid long function names. In this case,
specifying an explicit template_suffix can produce a more user
friendly name:

- decl: template<T,U> void FunctionTU(T arg1, U arg2)
 cxx_template:
 - instantiation: <int, long>
 format:
 template_suffix: instantiation1
 - instantiation: <float, double>
 format:
 template_suffix: instantiation2

	The Fortran functions will be named function_tu_instantiation1 and

	function_tu_instantiation2.

Additional Wrapper Functions

Functions can be created in the Fortran wrapper which have no
corresponding function in the C++ library. This may be necessary to
add functionality which may unnecessary in C++. For example, a
library provides a function which returns a string reference to a
name. If only the length is desired no extra function is required in
C++ since the length is extracted used a std::string method:

ExClass1 obj("name")
int len = obj.getName().length();

Calling the Fortran getName wrapper will copy the string into a
Fortran array but you need the length first to make sure there is
enough room. You can create a Fortran wrapper to get the length
without adding to the C++ library:

declarations:
- decl: class ExClass1
 declarations:
 - decl: int GetNameLength() const
 format:
 C_code: |
 {C_pre_call}
 return {CXX_this}->getName().length();

The generated C wrapper will use the C_code provided for the body:

int AA_exclass1_get_name_length(const AA_exclass1 * self)
{
 const ExClass1 *SH_this = static_cast<const ExClass1 *>(
 static_cast<const void *>(self));
 return SH_this->getName().length();
}

The C_pre_call format string is generated by Shroud to convert the
self argument into CXX_this and must be included in C_code
to get the definition.

Helper functions

Shroud provides some additional file static function which are inserted
at the beginning of the wrapped code. Some helper functions are used to
communicate between C and Fortran. They are global and written into
the fmt.C_impl_utility file. The names of these files will have
C_prefix prefixed to create unique names.

C helper functions

	ShroudStrCopy(char *dest, int ndest, const char *src, int nsrc)

	Copy src into dest, blank fill to ndest characters
Truncate if dest is too short to hold all of src.
dest will not be NULL terminated.

	int ShroudLenTrim(const char *src, int nsrc)

	Returns the length of character string src with length nsrc,
ignoring any trailing blanks.

Each Python helper is prefixed by format variable PY_helper_prefix which
defaults to SHROUD_. This is used to avoid conflict with other
wrapped functions.

The option PY_write_helper_in_util will write all of the
helper fuctions into the file defined by PY_utility_filename.
This can be useful to avoid clutter when there are a lot of classes
which may create lots of duplicate helpers. The helpers will no longer
be file static and instead will also be prefixed with C_prefix to
avoid conflicting with helpers created by another Shroud wrapped library.

Header Files

The header files for the library are included by the generated C++ source files.

The library source file will include the global cxx_header field.
Each class source file will include the class cxx_header field unless it is blank.
In that case the global cxx_header field will be used.

To include a file in the implementation list it in the global or class options:

cxx_header: global_header.hpp

declarations:
- decl: class Class1
 cxx_header: class_header.hpp

- decl: typedef int CustomType
 c_header: type_header.h
 cxx_header : type_header.hpp

The c_header field will be added to the header file of contains functions
which reference the type.
This is used for files which are not part of the library but which contain code
which helps map C++ constants to C constants

A global fortran_header field will insert #include lines to be
used with the Fortran preprocessor (typically a variant of the C
preprocessor). This will work with the cpp_if lines in
declarations which will conditionally compile a wrapper.

Local Variable

SH_ prefix on local variables which are created for a corresponding argument.
For example the argument char *name, may need to create a local variable
named std::string SH_name.

Shroud also generates some code which requires local variables such as
loop indexes. These are prefixed with SHT_. This name is controlled
by the format variable c_temp.

Results are named from fmt.C_result or fmt.F_result.

Format variable which control names are

	c_temp

	C_local

	C_this

	CXX_local

	CXX_this

	C_result

	F_result - SHT_rv (return value)

	F_this - obj

	LUA_result

	PY_result

C Preprocessor

It is possible to add C preprocessor conditional compilation
directives to the generated source. For example, if a function should
only be wrapped if USE_MPI is defined the cpp_if field can be
used:

- decl: void testmpi(MPI_Comm comm)
 format:
 function_suffix: _mpi
 cpp_if: ifdef HAVE_MPI
- decl: void testmpi()
 format:
 function_suffix: _serial
 cpp_if: ifndef HAVE_MPI

The function wrappers will be created within #ifdef/#endif
directives. This includes the C wrapper, the Fortran interface and
the Fortran wrapper. The generated Fortran interface will be:

 interface testmpi
#ifdef HAVE_MPI
 module procedure testmpi_mpi
#endif
#ifndef HAVE_MPI
 module procedure testmpi_serial
#endif
 end interface testmpi

Class generic type-bound function will also insert conditional
compilation directives:

- decl: class ExClass3
 cpp_if: ifdef USE_CLASS3
 declarations:
 - decl: void exfunc()
 cpp_if: ifdef USE_CLASS3_A
 - decl: void exfunc(int flag)
 cpp_if: ifndef USE_CLASS3_A

The generated type will be:

 type exclass3
 type(SHROUD_capsule_data), private :: cxxmem
 contains
 procedure :: exfunc_0 => exclass3_exfunc_0
 procedure :: exfunc_1 => exclass3_exfunc_1
#ifdef USE_CLASS3_A
 generic :: exfunc => exfunc_0
#endif
#ifndef USE_CLASS3_A
 generic :: exfunc => exfunc_1
#endif
 end type exclass3

A cpp_if field in a class will add a conditional directive around
the entire class.

Finally, cpp_if can be used with types. This would be required in
the first example since mpi.h should only be included when
USE_MPI is defined:

typemaps:
- type: MPI_Comm
 fields:
 cpp_if: ifdef USE_MPI

When using cpp_if, it is useful to set the option
F_filename_suffix to F. This will cause most compilers to
process the Fortran souce with cpp before compilation.
The fortran_header field can be added to the YAML file to
insert #include directives at the top of the Fortran source files.

The typemaps field can only appear at the outermost layer
and is used to augment existing typemaps.

Debugging

Shroud generates a JSON file with all of the input from the YAML
and all of the format dictionaries and type maps.
This file can be useful to see which format keys are available and
how code is generated.

 C and C++

C and C++

A C API is created for a C++ library. Wrapper functions are within an
extern "C" block so they may be called by C or Fortran. But the
file must be compiled with the C++ compiler since it is wrapping a C++
library.

When wrapping a C library, additional functions may be created which
pass meta-data arguments. When called from Fortran, its wrappers will
provide the meta-data. When called directly by a C application, the
meta-data must be provided by the user.

Names

Shroud will flatten scoped C++ library names to create the C API.
Since C does not support scopes such as classes and namespaces, a name
such as ns1::function must be flattened into ns1_function to
avoid conflict with a similarly named function ns2::function.

Names are also contolled by the C_api_case option. It can be set
to lower, upper, underscore or preserve. This option is used to set
the format field C_name_api which in turn is used in the option
C_name_template. The default is preserve. This creates a stronger
correlation between the C API and the C++ API.

To further help control the scope of C names, all externals add a prefix.
It defaults to the first three letters of the
library but may be changed by setting the format C_prefix:

format:
 C_prefix: NEW_

Wrapper

As each function declaration is parsed a format dictionary is created
with fields to describe the function and its arguments.
The fields are then expanded into the function wrapper.

C wrapper:

extern "C" {

{C_return_type} {C_name}({C_prototype})
{
 {C_code}
}

}

The wrapper is within an extern "C" block so that C_name will
not be mangled by the C++ compiler.

C_return_code can be set from the YAML file to override the return value:

- decl: void vector_string_fill(std::vector< std::string > &arg+intent(out))
 format:
 C_return_type: int
 C_return_code: return SH_arg.size();

The C wrapper (and the Fortran wrapper) will return int instead of
void using C_return_code to compute the value. In this case,
the wrapper will return the size of the vector. This is useful since
C and Fortran convert the vector into an array.

Struct Type

While C++ considers a struct and a class to be similar, Shroud assumes
a struct is intended to be a C compatible data structure.
It has no methods which will cause a v-table to be created.
This will cause an array of structs to be identical in C and C++.

The main use of wrapping a struct for C is to provide access to the name.
If the struct is defined within a namespace, then a C application will be
unable to access the struct. Shroud creates an identical struct as the
one defined in the YAML file but at the global level.

Class Types

A C++ class is represented by the C_capsule_data_type. This struct
contains a pointer to the C++ instance allocated and an index passed
to generated C_memory_dtor_function used to destroy the memory:

struct s_{C_capsule_data_type} {
 void *addr; /* address of C++ memory */
 int idtor; /* index of destructor */
};
typedef struct s_{C_capsule_data_type} {C_capsule_data_type};

In addition, an identical struct is created for each class. Having a
unique struct and typedef for each class add a measure of type safety
to the C wrapper:

struct s_{C_type_name} {
 void *addr; /* address of C++ memory */
 int idtor; /* index of destructor */
};
typedef struct s_{C_type_name} {C_type_name};

idtor is the index of the destructor code. It is used
with memory managerment and discussed in Memory Management.

The C wrapper for a function which returns a class instance will
return a C_capsule_data_type by value. Functions which take
a class instance will receive a pointer to a C_capsule_data_type.

 Fortran

Fortran

This section discusses Fortran specific wrapper details.
This will also include some C wrapper details since some C wrappers
are created specificially to be called by Fortran.

Names

There are several options to mangle the C++ library names into Fortran
names. By default, names are mangled to convert camel case into snake
case. For example, StructAsClass into struct_as_class. Since
Fortran is case insensitive, StructAsClass and structasclass
are equivalent. By using snake case, the identifier should be easier
for a reader to parse regardless of the case.

The behavior is controlled by the option F_api_case which may have
the values lower, upper, underscore, or preserve. This option
is used to set the format field F_name_api which in turn is used
in several options used to define names consistently:
F_C_name_template, F_name_impl_template,
F_name_function_template, F_name_generic_template,
F_abstract_interface_subprogram_template,
F_derived_name_template, F_typedef_name_template.

A Fortran module will be created for the library. This allows the
compiler to do it’s own mangling so it is unnecessary to add an
additional prefix to function names. In contrast, the C wrappers add a
prefix to each wrapper since all names are global.

Wrapper

As each function declaration is parsed a format dictionary is created
with fields to describe the function and its arguments.
The fields are then expanded into the function wrapper.

The template for Fortran code showing names which may
be controlled directly by the input YAML file:

module {F_module_name}

 ! use_stmts
 implicit none

 abstract interface
 subprogram {F_abstract_interface_subprogram_template}
 type :: {F_abstract_interface_argument_template}
 end subprogram
 end interface

 interface
 {F_C_pure_clause} {F_C_subprogram} {F_C_name}
 {F_C_result_clause} bind(C, name="{C_name}")
 ! arg_f_use
 implicit none
 ! arg_c_decl
 end {F_C_subprogram} {F_C_name}
 end interface

 interface {F_name_generic}
 module procedure {F_name_impl}
 end interface {F_name_generic}

contains

 {F_subprogram} {F_name_impl}
 arg_f_use
 arg_f_decl
 ! splicer begin
 declare ! local variables
 pre_call
 call {arg_c_call}
 post_call
 ! splicer end
 end {F_subprogram} {F_name_impl}

end module {F_module_name}

Class

Use of format fields for creating class wrappers.

type, bind(C) :: {F_capsule_data_type}
 type(C_PTR) :: addr = C_NULL_PTR ! address of C++ memory
 integer(C_INT) :: idtor = 0 ! index of destructor
end type {F_capsule_data_type}

type {F_derived_name}
 type({F_capsule_data_type}) :: {F_derived_member}
contains
 procedure :: {F_name_function} => {F_name_impl}
 generic :: {F_name_generic} => {F_name_function}, ...

 ! F_name_getter, F_name_setter, F_name_instance_get as underscore_name
 procedure :: [F_name_function_template] => [F_name_impl_template]

end type {F_derived_name}

Standard type-bound procedures

Several type bound procedures can be created to make it easier to
use class from Fortran.

Usually the F_derived_name is constructed from wrapped C++
constructor. It may also be useful to take a pointer to a C++ struct
and explicitly put it into a the derived type. The functions
F_name_instance_get and F_name_instance_set can be used to access
the pointer directly.

Two predicate function are generated to compare derived types:

 interface operator (.eq.)
 module procedure class1_eq
 module procedure singleton_eq
 end interface

 interface operator (.ne.)
 module procedure class1_ne
 module procedure singleton_ne
 end interface

contains

 function {F_name_scope}eq(a,b) result (rv)
 use iso_c_binding, only: c_associated
 type({F_derived_name}), intent(IN) ::a,b
 logical :: rv
 if (c_associated(a%{F_derived_member}%addr, b%{F_derived_member}%addr)) then
 rv = .true.
 else
 rv = .false.
 endif
 end function {F_name_scope}eq

 function {F_name_scope}ne(a,b) result (rv)
 use iso_c_binding, only: c_associated
 type({F_derived_name}), intent(IN) ::a,b
 logical :: rv
 if (.not. c_associated(a%{F_derived_member}%addr, b%{F_derived_member}%addr)) then
 rv = .true.
 else
 rv = .false.
 endif
 end function {F_name_scope}ne

Generic Interfaces

Shroud has the ability to create generic interfaces for the routines
that are being wrapped. The generic intefaces groups several
functions under a common name. The compiler will then call the
corresponding function based on the argument types used to call the
generic function.

In several cases generic interfaces are automatically
created. Function overloading and default arguments both create
generic interfaces.

Assumed Rank

Assumed rank arguments allow a scalar or any rank array to be passed
as an argument. This is added as the attribute dimension(..). Think
of the .. as a :, used to separate lower and upper bounds,
which fell over. This feature is part of Fortran’s Further
interoperability with C. First as TS 29113, approved in 2012, then as
part of the Fortran 2018 standard.

Note

Shroud does not support Further Interoperability with C directly, yet.

 Python

Python

Note

Work in progress

 Cookbook

Cookbook

Function is really a macro or function pointer

When wrapping a C library, a function which is really a macro may not
create a C wrapper. It is necessary to use the option
C_force_wrapper: true to create a wrapper which will expand the
macro and create a function which the Fortran wrapper may call. This
same issue occurs when the function is really a function pointer.

When wrapping C++, a C wrapper is always created to create a extern C
symbol that Fortran can call. So this problem does not occur.

F_name_impl with fortran_generic

Using the F_name_impl format string to explicitly name a Fortran
wrapper combined with the fortran_generic field may present some
surprising behavior. The routine BA_change takes a long
argument. However, this is inconvenient in Fortran since the default
integer is typically an int. When passing a constant you need to
explicitly state the kind as 0_C_LONG. Shroud lets you create a
generic routine which will also accept 0. But if you explicitly
name the function using F_name_impl, both Fortran generated
functions will have the same name. The solution is to set format field
F_name_generic and the option for F_name_impl_template.

- decl: int BA_change(const char *name, long n)
 format:
 F_name_generic: change
 options:
 F_name_impl_template: "{F_name_generic}{function_suffix}"
 fortran_generic:
 - decl: (int n)
 function_suffix: int
 - decl: (long n)
 function_suffix: long

Will generate the Fortran code

interface change
 module procedure change_int
 module procedure change_long
end interface change

 Typemaps

Typemaps

A typemap is created for each type to describe to Shroud how it should
convert a type between languages for each wrapper. Native types are
predefined and a Shroud typemap is created for each struct and
class declaration.

The general form is:

declarations:
- type: type-name
 fields:
 field1:
 field2:

type-name is the name used by C++. There are some fields which are
used by all wrappers and other fields which are used by language
specific wrappers.

type fields

These fields are common to all wrapper languages.

base

The base type of type-name.
This is used to generalize operations for several types.
The base types that Shroud uses are bool, integer, real,
complex, string, vector, struct or shadow.

integer includes all integer types such as short, int and long.

cpp_if

A c preprocessor test which is used to conditionally use
other fields of the type such as c_header and cxx_header:

- type: MPI_Comm
 fields:
 cpp_if: ifdef USE_MPI

flat_name

A flattened version of cxx_type which allows the name to be
used as a legal identifier in C, Fortran and Python.
By default any scope separators are converted to underscores
i.e. internal::Worker becomes internal_Worker.
Imbedded blanks are converted to underscores
i.e. unsigned int becomes unsigned_int.
And template arguments are converted to underscores with the trailing
> being replaced
i.e. std::vector<int> becomes std_vector_int.

Complex types set this explicitly since C and C++ have much different
type names. The flat_name is always double_complex while
c_type is double complex and cxx_type is complex<double>.

One use of this name is as the function_suffix for templated functions.

idtor

Index of capsule_data destructor in the function
C_memory_dtor_function.
This value is computed by Shroud and should not be set.
It can be used when formatting statements as {idtor}.
Defaults to 0 indicating no destructor.

sgroup

Groups different base types together.
For example, base integer and real are both sgroup native.
For many others, they’re the same: base=struct, sgroup=struct.

C and C++

c_type

Name of type in C.
Default to None.

c_header

Name of C header file required for type.
This file is included in the interface header.
Only used with language=c.
Defaults to None.

See also cxx_header.

For example, size_t requires stddef.h:

type: size_t
fields:
 c_type: size_t
 cxx_type: size_t
 c_header: <stddef.h>

c_to_cxx

Expression to convert from C to C++.
Defaults to None which implies {c_var}.
i.e. no conversion required.

c_templates

c_statements for cxx_T

A dictionary indexed by type of specialized c_statements When an
argument has a template field, such as type vector<string>, some
additional specialization of c_statements may be required:

c_templates:
 string:
 intent_in_buf:
 - code to copy CHARACTER to vector<string>

c_return_code

None

c_union

None
Union of C++ and C type (used with structs and complex)

cxx_type

Name of type in C++.
Defaults to None.

cxx_to_c

Expression to convert from C++ to C.
Defaults to None which implies {cxx_var}.
i.e. no conversion required.

cxx_header

Name of C++ header file required for implementation.

c_type: size_t
c_header: '<stddef.h>'
cxx_header: '<cstddef>'

See also c_header.

impl_header

impl_header is used for implementation, i.e. the wrap.cpp file.
For example, std::string uses <string>.
<string> should not be in the interface since the wrapper is a C API.

wrap_header

wrap_header is used for generated wrappers for shadow classes.
Contains struct definitions for capsules from Fortran.

A C int is represented as:

type: int
fields:
 c_type: int
 cxx_type: int

Fortran

i_module

Fortran modules needed for type in the interface.
A dictionary keyed on the module name with the value being a list of symbols.
Similar to f_module.
Defaults to None.

In this example, the symbol indextype is created by a typedef which
creates a symbol in Fortran. This symbol, indextype, must be
imported into the interface.

typedef int indextype;

indextype:
 --import--:
 - indextype

i_type

Type declaration for bind(C) interface.
Defaults to None which will then use f_type.

f_cast

Expression to convert Fortran type to C type.
This is used when creating a Fortran generic functions which
accept several type but call a single C function which expects
a specific type.
For example, type int is defined as int({f_var}, C_INT).
This expression converts f_var to a integer(C_INT).
Defaults to {f_var} i.e. no conversion.

f_derived_type

Fortran derived type name.
Defaults to None which will use the C++ class name
for the Fortran derived type name.

f_kind

Fortran kind of type. For example, C_INT or C_LONG.
Defaults to None.

f_module

Fortran modules needed for type in the implementation wrapper. A
dictionary keyed on the module name with the value being a list of
symbols.
Defaults to None.:

f_module:
 iso_c_binding:
 - C_INT

f_type

Name of type in Fortran. (integer(C_INT))
Defaults to None.

f_to_c

None
Expression to convert from Fortran to C.

example

An int argument is converted to Fortran with the typemap:

typemap:
- type: int
 fields:
 f_type: integer(C_INT)
 f_kind: C_INT
 f_module:
 iso_c_binding:
 - C_INT
 f_cast: int({f_var}, C_INT)

A struct defined in another YAML file.

typemap:
- type: Cstruct1
 fields:
 base: struct
 cxx_header:
 - struct.hpp
 wrap_header:
 - wrapstruct.h
 c_type: STR_cstruct1
 f_derived_type: cstruct1
 f_module_name: struct_mod

Statements

Each language also provides a section that is used
to insert language specific statements into the wrapper.
These are named c_statements, f_statements, and
py_statements.

The are broken down into several resolutions. The first is the
intent of the argument. result is used as the intent for
function results.

	in

	Code to add for argument with intent(IN).
Can be used to convert types or copy-in semantics.
For example, char * to std::string.

	out

	Code to add after call when intent(OUT).
Used to implement copy-out semantics.

	inout

	Code to add after call when intent(INOUT).
Used to implement copy-out semantics.

	result

	Result of function.
Including when it is passed as an argument, F_string_result_as_arg.

Each intent is then broken down into code to be added into
specific sections of the wrapper. For example, declaration,
pre_call and post_call.

Each statement is formatted using the format dictionary for the argument.
This will define several variables.

	c_var

	The C name of the argument.

	cxx_var

	Name of the C++ variable.

	f_var

	Fortran variable name for argument.

For example:

f_statements:
 intent_in:
 - '{c_var} = {f_var} ! coerce to C_BOOL'
 intent_out:
 - '{f_var} = {c_var} ! coerce to logical'

Note that the code lines are quoted since they begin with a curly brace.
Otherwise YAML would interpret them as a dictionary.

See the language specific sections for details.

 Statements

Statements

Shroud can be thought of as a fancy macro processor.
The statement data structure is used to define code that should be
used to create the wrapper.
Combinations of language, type and attributes are used to select
a statement entry.

Passing function result as an argument

This section explains how statements are used to generate code for
functions which return a struct.

Compiler ABI do not agree on how some function results should be
returned. To ensure portablity, some function results must be passed
as an additional argument. This is typically more complicated types
such as struct or complex.

 dict(
 name="f_function_struct_scalar",
 alias=[
 "c_function_struct_scalar",
],
 f_arg_call=["{f_var}"],

 c_arg_decl=["{c_type} *{c_var}"],
 i_arg_decl=["{f_type}, intent(OUT) :: {c_var}"],
 i_arg_names=["{c_var}"],
 i_import=["{f_kind}"],
 c_return_type="void", # Convert to function.
 cxx_local_var="result",
 c_post_call=[
 "memcpy((void *) {c_var}, (void *) &{cxx_var}, sizeof({cxx_var}));",
],
),

 C Statements

C Statements

Note

Work in progress

 Fortran Statements

Fortran Statements

Note

Work in progress.

 Reference

Reference

Command Line Options

	help

	Show this help message and exit.

	version

	Show program’s version number and exit.

	outdir OUTDIR

	Directory for output files.
Defaults to current directory.

	outdir-c-fortran OUTDIR_C_FORTRAN

	Directory for C/Fortran wrapper output files, overrides –outdir.

	outdir-python OUTDIR_PYTHON

	Directory for Python wrapper output files, overrides –outdir.

	outdir-lua OUTDIR_LUA

	Directory for Lua wrapper output files, overrides –outdir.

	outdir-yaml OUTDIR_YAML

	Directory for YAML output files, overrides –outdir.

	logdir LOGDIR

	Directory for log files.
Defaults to current directory.

	cfiles CFILES

	Output file with list of C and C++ files created.

	ffiles FFILES

	Output file with list of Fortran created.

	path PATH

	Colon delimited paths to search for splicer files, may
be supplied multiple times to append to path.

	sitedir

	Return the installation directory of shroud and exit.
This path can be used to find cmake/SetupShroud.cmake.

	write-helpers BASE

	Write files which contain the available helper functions
into the files BASE.c and BASE.f.

	write-statements BASE

	Write a file which contain the statements tree.
Used for debugging.

	write-version

	Write Shroud version into generated files.
--nowrite-version will not write the version and is used
by the testsuite to avoid changing every reference file when
the version changes.

	yaml-types FILE

	Write a YAML file with the default types.

Global Fields

	copyright

	A list of lines to add to the top of each generate file.
Do not include any language specific comment characters since
Shroud will add the appropriate comment delimiters for each language.

	classes

	A list of classes. Each class may have fields as detailed in
Class Fields.

	cxx_header

	Blank delimited list of header files which
will be included in the implementation file.
The order will be preserved when generating wrapper files.

	format

	Dictionary of Format fields for the library.
Described in Format Fields.

	language

	The language of the library to wrap.
Valid values are c and c++.
The default is c++.

	library

	The name of the library.
Used to name output files and modules.
The first three letters are used as the default for C_prefix option.
Defaults to library.
Each YAML file is intended to wrap a single library.

	options

	Dictionary of option fields for the library.
Described in Options

	patterns

	Code blocks to insert into generated code.
Described in Patterns.

	splicer

	A dictionary mapping file suffix to a list of splicer files
to read:

splicer:
 c:
 - filename1.c
 - filename2.c

	types

	A dictionary of user define types.
Each type is a dictionary of members describing how to
map a type between languages.
Described in Typemaps and Types Map.

Class Fields

	cxx_header

	C++ header file name which will be included in the implementation file.
If unset then the global cxx_header will be used.

	format

	Format fields for the class.
Creates scope within library.
Described in Format Fields.

	declarations

	A list of declarations in the class.
Each function is defined by Function Fields

	fields:

	A dictionary of fields used to update the typemap.

	options

	Options fields for the class.
Creates scope within library.
Described in Options

Function Fields

Each function can define fields to define the function
and how it should be wrapped. These fields apply only
to a single function i.e. they are not inherited.

	C_prototype

	XXX override prototype of generated C function

	cxx_template

	A list that define how each templated argument
should be instantiated:

decl: void Function7(ArgType arg)
cxx_template:
- instantiation: <int>
- instantiation: <double>

	decl

	Function declaration.
Parsed to extract function name, type and arguments descriptions.

	default_arg_suffix

	A list of suffixes to apply to C and Fortran functions generated when
wrapping a C++ function with default arguments. The first entry is for
the function with the fewest arguments and the final entry should be for
all of the arguments.

	format

	Format fields for the function.
Creates scope within container (library or class).
Described in Format Fields.

	fortran_generic

	A dictionary of lists that define generic functions which will be
created. This allows different types to be passed to the function.
This feature is provided by C which will promote arguments.
Each generic function will have a suffix which defaults to an underscore
plus a sequence number.
This change be changed by adding function_suffix for a declaration.

 decl: void GenericReal(double arg)
 fortran_generic:
 - decl: (float arg)
 function_suffix: suffix1
 - decl: (double arg)

A full example is at :ref:`GenericReal <example_GenericReal>`.

	options

	Options fields for the function.
Creates scope within container (library or class).
Described in Options

	return_this

	If true, the method returns a reference to this. This idiom can be used
to chain calls in C++. This idiom does not translate to C and Fortran.
Instead the C_return_type format is set to void.

Options

	C_API_case

	Controls mangling of C++ library names to C names
via the format field C_name_api.
Possible values are lower, upper, underscore, or preserve.
Defaults to preserve and will be combined with C_prefix.
For example, C_name_template includes {C_prefix}{C_name_scope}{C_name_api}.

	C_extern_C

	Set to true when the C++ routine is extern "C".
Defaults to false.

	C_force_wrapper

	If true, always create an explicit C wrapper.
When language is c++ a C wrapper is always created.
When wrapping C, the wrapper is automatically created if there is work for it to do.
For example, pre_call or post_call is defined.
The user should set this option when wrapping C and the function is really
a macro or a function pointer variable. This forces a function to be created
allowing Fortran to use the macro or function pointer.

	C_line_length

	Control length of output line for generated C.
This is not an exact line width, but is instead a hint of where
to break lines.
A value of 0 will give the shortest possible lines.
Defaults to 72.

	C_shadow_result

	If true, the api for the function result will be set to capptr,
otherwise it will be set to capsule. In both cases, the result is
passed from Fortran to the C api as an additional argument. With
C_shadow_result true, a pointer to the capsule is returned as the
function result. If false, the C wrapper is a void function.
capptr acts more like C library functions such as strcpy which
return a pointer to the result. capsule makes for a simpler
Fortran wrapper implementation since the function result is not used
since it is identical to the result argument.

	class_baseclass

	Used to define a baseclass for a struct for wrap_struct_as=class”.
The baseclase must already be defined earlier in the YAML file.
It must be in the same namespace as the struct.

 - decl: struct Cstruct_as_class
 options:
 wrap_struct_as: class
 - decl: struct Cstruct_as_subclass
 options:
 wrap_struct_as: class
 class_baseclass: Cstruct_as_class

This is equivelent to the C++ code

.. code-block:: c++

 class Cstruct_as_class;
 class Cstruct_as_subclass : public Cstruct_as_class;

The corresponding Fortran wrapper will have

type cstruct_as_class
 type(STR_SHROUD_capsule_data) :: cxxmem
end type cstruct_as_class
type, extends(cstruct_as_class) :: cstruct_as_class
end type cstruct_as_subclass

	class_ctor

	Indicates that this function is a constructor for a struct.
The value is the name of the struct.
Useful for wrap_struct_as=class when used with C.

- decl: struct Cstruct_as_class {
 int x1;
 int y1;
 };
 options:
 wrap_struct_as: class

- decl: Cstruct_as_class *Create_Cstruct_as_class(void)
 options:
 class_ctor: Cstruct_as_class

	class_method

	Indicates that this function is a method for a struct.

	CXX_standard

	C++ standard. Defaults to 2011.
See nullptr.

	debug

	Print additional comments in generated files that may
be useful for debugging.
Defaults to false.

	debug_index

	Print index number of function and relationships between
C and Fortran wrappers in the wrappers and json file.
The number changes whenever a new function
is inserted and introduces lots of meaningless differenences in the test
answers. This option is used to avoid the clutter. If needed for
debugging, then set to true. debug must also be true.
Defaults to false.

	doxygen

	If True, create doxygen comments.

	F_API_case

	Controls mangling of C++ library names to Fortran names
via the format field F_name_api.
Possible values are lower, upper, underscore, or preserve.
Defaults to underscore to convert CamelCase to camel_case.
Since Fortran is case insensitive, users are not required to
respect the case of the C++ name. Using underscore makes the
names easier to read regardless of the case.

	F_assumed_rank_min

	Minimum rank of argument with assumed-rank.
Defaults to 0 (scalar).

	F_assumed_rank_max

	Maximum rank of argument with assumed-rank.
Defaults to 7.

	F_blanknull

	Default value of attribute +blanknull for const char *
arguments. This attribute will convert blank Fortran strings
to a NULL pointer.

	F_CFI

	Use the C Fortran Interface provided by Futher Interoperability with C
from Fortran 2018 (initially defined in TS29113 2012).

	F_create_bufferify_function

	Controls creation of a bufferify function.
If true, an additional C function is created which receives
bufferified arguments - i.e. the len, len_trim, and size may be
added as additional arguments. Set to false when when you want to
avoid passing this information. This will avoid a copy of
CHARACTER arguments required to append a trailing null.
Defaults to true.

	F_create_generic

	Controls creation of a generic interface. It defaults to true for
most cases but will be set to False if a function is templated on
the return type since Fortran does not distinguish generics based on
return type (similar to overloaded functions based on return type in
C++).

	F_default_args

	Decide how to handle C++ default argument functions.
See Default Arguments.

	generic

	Create a wrapper for each variation from all arguments
to no arguments defaulted. In Fortran, create a generic
interface.

	optional

	Make each default argument as a Fortran OPTIONAL argument.

	require

	Require all arguments to be provided to the wrapper.

	F_line_length

	Control length of output line for generated Fortran.
This is not an exact line width, but is instead a hint of where
to break lines.
A value of 0 will give the shortest possible lines.
Defaults to 72.

	F_force_wrapper

	If true, always create an explicit Fortran wrapper.
If false, only create the wrapper when there is work for it to do;
otherwise, call the C function directly.
For example, a function which only deals with native
numeric types does not need a wrapper since it can be called
directly by defining the correct interface.
The default is false.

	F_standard

	The fortran standard. Defaults to 2003.
This effects the mold argument of the allocate statement.

	F_return_fortran_pointer

	Use c_f_pointer in the Fortran wrapper to return
a Fortran pointer instead of a type(C_PTR)
in routines which return a pointer.
It does not apply to char *, void *, and routines which return
a pointer to a class instance.
Defaults to true.

	F_string_len_trim

	For each function with a std::string argument, create another C
function which accepts a buffer and length. The C wrapper will call
the std::string constructor, instead of the Fortran wrapper
creating a NULL terminated string using trim. This avoids
copying the string in the Fortran wrapper.
Defaults to true.

	F_struct_getter_setter

	If true, a getter and setter will be created for struct members
which are a pointer to native type. This allows a Fortran pointer
to be used with the field instead of having to deal with the
type(C_PTR) directly.
Default to true

	F_trim_char_in

	Controls code generation for const char * arguments.
If True, Fortran perform a TRIM and concatenates
C_NULL_CHAR. If False, it will be done in C. If the only
need for the C wrapper is to null-terminate a string (wrapping a c
library and no other argument requires a wrapper), then the C
wrapper can be avoid by moving the null-termination action to
Fortran.
Default is True.

literalinclude

Write some text lines which can be used with Sphinx’s literalinclude
directive. This is used to insert the generated code into the
documentation.
Can be applied at the top level or any declaration.
Setting literalinclude at the top level implies literalinclude2.

literalinclude2

Write some text lines which can be used with Sphinx’s literalinclude
directive. Only effects some entities which do not map to a
declarations such as some helper functions or types.
Only effective at the top level.

Each Fortran interface will be encluded in its own interface block.
This is to provide the interface context when code is added to the
documentation.

	LUA_API_case

	Controls mangling of C++ library names to Lua names
via the format field LUA_name_api.
Possible values are lower, upper, underscore, or preserve.
Defaults to preserve.

	PY_create_generic

	Controls creation of a multi-dispatch function with
overloaded/templated functions.
It defaults to true for
most cases but will be set to False if a function is templated on
the return type since Fortran does not distiuguish generics based on
return type (similar to overloaded functions based on return type in
C++).

	PY_write_helper_in_util

	When True helper functions will be written into the utility file
PY_utility_filename. Useful when there are lots of classes since
helper functions may be duplicated in several files.
The value of format PY_helper_prefix will have C_prefix append
to create names that are unique to the library.
Defaults to False.

	return_scalar_pointer

	Determines how to treat a function which returns a pointer to a scalar
(it does not have the dimension or rank attribute).
scalar return as a scalar or pointer to return as a pointer.
This option does not effect the C or Fortran wrapper.
For Python, pointer will return a NumPy scalar.
Defaults to pointer.

	show_splicer_comments

	If true show comments which delineate the splicer blocks;
else, do not show the comments.
Only the global level option is used.

	wrap_class_as

	Defines how a class should be wrapped.
If class, wrap using a shadow type.
If struct, wrap the same as a struct.
Default is class.

	wrap_struct_as

	Defines how a struct should be wrapped.
If struct, wrap a struct as a Fortran derived-type.
If class, wrap a struct the same as a class using a shadow type.
Default is struct.

	wrap_c

	If true, create C wrappers.
Defaults to true.

	wrap_fortran

	If true, create Fortran wrappers.
Defaults to true.

	wrap_python

	If true, create Python wrappers.
Defaults to false.

	wrap_lua

	If true, create Lua wrappers.
Defaults to false.

Option Templates

Templates are set in options then expanded to assign to the format
dictionary to create names in the generated code.

	C_enum_template

	Name of enumeration in C wrapper.
{C_prefix}{C_name_scope}{enum_name}

	C_enum_member_template

	Name of enumeration member in C wrapper.
{C_prefix}{C_name_scope}{enum_member_name}

	C_header_filename_class_template

	wrap{file_scope}.{C_header_filename_suffix}

	C_header_filename_library_template

	wrap{library}.{C_header_filename_suffix}

	C_header_filename_namespace_template

	wrap{scope_file}.{C_header_filename_suffix}

	C_impl_filename_class_template

	wrap{file_scope}.{C_impl_filename_suffix}

	C_impl_filename_library_template

	wrap{library}.{C_impl_filename_suffix}

	C_impl_filename_namespace_template

	wrap{scope_file}.{C_impl_filename_suffix}

	C_memory_dtor_function_template

	Name of function used to delete memory allocated by C or C++.
defaults to {C_prefix}SHROUD_memory_destructor.

	C_name_template

	{C_prefix}{C_name_scope}{C_name_api}{function_suffix}{f_c_suffix}{template_suffix}

	C_name_typedef_template

	{C_prefix}{C_name_scope}{typedef_name}

	F_C_name_template

	{F_C_prefix}{F_name_scope}{F_name_api}{function_suffix}{f_c_suffix}{template_suffix}

	F_abstract_interface_argument_template

	The name of arguments for an abstract interface used with function pointers.
Defaults to {F_name_api}_{argname}
where argname is the name of the function argument.
see Function Pointers.

	F_abstract_interface_subprogram_template

	The name of the abstract interface subprogram which represents a
function pointer.
Defaults to arg{index} where index is the 0-based argument index.
See Function Pointers.

	F_array_type_template

	{C_prefix}SHROUD_array

	F_capsule_data_type_template

	Name of the derived type which is the BIND(C) equivalent of the
struct used to implement a shadow class (C_capsule_data_type).
All classes use the same derived type.
Defaults to {C_prefix}SHROUD_capsule_data.

	F_capsule_type_template

	{C_prefix}SHROUD_capsule

	F_derived_name_template

	Defaults to {F_name_api}.

	F_enum_member_template

	Name of enumeration member in Fortran wrapper.
{F_name_scope}{enum_member_lower}
Note that F_enum_template does not exist since only the members are
in the Fortran code, not the enum name itself.

	F_name_generic_template

	{F_name_api}

	F_impl_filename_library_template

	wrapf{library_lower}.{F_filename_suffix}

	F_name_impl_template

	{F_name_scope}{F_name_api}{function_suffix}{template_suffix}

	F_module_name_library_template

	{library_lower}_mod

	F_module_name_namespace_template

	{file_scope}_mod

	F_name_function_template

	{F_name_api}{function_suffix}{template_suffix}

	F_typedef_name_template

	{F_name_scope}{F_name_api}

	LUA_class_reg_template

	Name of luaL_Reg array of function names for a class.
{LUA_prefix}{cxx_class}_Reg

	LUA_ctor_name_template

	Name of constructor for a class.
Added to the library’s table.
{cxx_class}

	LUA_header_filename_template

	lua{library}module.{LUA_header_filename_suffix}

	LUA_metadata_template

	Name of metatable for a class.
{cxx_class}.metatable

	LUA_module_filename_template

	lua{library}module.{LUA_impl_filename_suffix}

	LUA_module_reg_template

	Name of luaL_Reg array of function names for a library.
{LUA_prefix}{library}_Reg

	LUA_name_impl_template

	Name of implementation function.
All overloaded function use the same Lua wrapper so
function_suffix is not needed.
{LUA_prefix}{C_name_scope}{underscore_name}

	LUA_name_template

	Name of function as know by Lua.
All overloaded function use the same Lua wrapper so
function_suffix is not needed.
{function_name}

	LUA_userdata_type_template

	{LUA_prefix}{cxx_class}_Type

	LUA_userdata_member_template

	Name of pointer to class instance in userdata.
self

	PY_array_arg

	How to wrap arrays - numpy or list.
Applies to function arguments and to structs when
PY_struct_arg is class (struct-as-class).
Defaults to numpy.
Added to fmt for functions.
Useful for c_helpers in statements.

c_helper="get_from_object_{c_type}_{PY_array_arg}",

	PY_module_filename_template

	py{library}module.{PY_impl_filename_suffix}

	PY_header_filename_template

	py{library}module.{PY_header_filename_suffix}

	PY_utility_filename_template

	py{library}util.{PY_impl_filename_suffix}

	PY_PyTypeObject_template

	{PY_prefix}{cxx_class}_Type

	PY_PyObject_template

	{PY_prefix}{cxx_class}

	PY_member_getter_template

	Name of descriptor getter method for a class variable.
{PY_prefix}{cxx_class}_{variable_name}_getter

	PY_member_setter_template

	Name of descriptor setter method for a class variable.
{PY_prefix}{cxx_class}_{variable_name}_setter

	PY_member_object_template

	Name of struct member of type PyObject * which
contains the data for member pointer fields.
{variable_name}_obj.

	PY_name_impl_template

	{PY_prefix}{function_name}{function_suffix}{template_suffix}

	PY_numpy_array_capsule_name_template

	Name of PyCapsule object used as base object of NumPy arrays.
Used to make sure a valid capsule is passed to PY_numpy_array_dtor_function.
{PY_prefix}array_dtor

	PY_numpy_array_dtor_context_template

	Name of const char * [] array used as the context field
for PY_numpy_array_dtor_function.
{PY_prefix}array_destructor_context

	PY_numpy_array_dtor_function_template

	Name of destructor in PyCapsule base object of NumPy arrays.
{PY_prefix}array_destructor_function

	PY_struct_array_descr_create_template

	Name of C/C++ function to create a PyArray_Descr pointer for a structure.
{PY_prefix}{cxx_class}_create_array_descr

	PY_struct_arg

	How to wrap structs - numpy, list or class.
Defaults to numpy.

	PY_struct_array_descr_variable_template

	Name of C/C++ variable which is a pointer to a PyArray_Descr
variable for a structure.
{PY_prefix}{cxx_class}_array_descr

	PY_struct_array_descr_name_template

	Name of Python variable which is a numpy.dtype for a struct.
Can be used to create instances of a C/C++ struct from Python.
np.array((1,3.14), dtype=tutorial.struct1_dtype)
{cxx_class}_dtype

	PY_type_filename_template

	py{file_scope}type.{PY_impl_filename_suffix}

	PY_type_impl_template

	Names of functions for type methods such as tp_init.
{PY_prefix}{cxx_class}_{PY_type_method}{function_suffix}{template_suffix}

	PY_use_numpy

	Allow NumPy arrays to be used in the module.
For example, when assigning to a struct-as-class member.

	SH_class_getter_template

	Name of generated getter function for class members.
The wrapped name will be mangled futher to distinguish scope.
Defaults to get_{wrapped_name}.

	SH_class_setter_template

	Name of generated setter function for class members.
The wrapped name will be mangled futher to distinguish scope.
Defaults to set_{wrapped_name}.

	SH_struct_getter_template

	Name of generated getter function for struct members.
The wrapped name will be mangled futher to distinguish scope.
Defaults to {struct_name}_get_{wrapped_name}.

	SH_struct_setter_template

	Name of generated setter function for struct members.
The wrapped name will be mangled futher to distinguish scope.
Defaults to {struct_name}_set_{wrapped_name}.

	YAML_type_filename_template

	Default value for global field YAML_type_filename
{library_lower}_types.yaml

Format Fields

Each scope (library, class, function) has its own format dictionary.
If a value is not found in the dictionary, then the parent
scopes will be recursively searched.

Library

	C_array_type

	Name of structure used to store metadata about an array
such as its address and size.
Defaults to {C_prefix}SHROUD_array.

	C_bufferify_suffix

	Suffix appended to generated routine which pass strings as buffers
with explicit lengths.
Defaults to _bufferify

	C_capsule_data_type

	Name of struct used to share memory information with Fortran.
Defaults to SHROUD_capsule_data.

	C_header_filename

	Name of generated header file for the library.
Defaulted from expansion of option C_header_filename_library_template.

	C_header_filename_suffix

	Suffix added to C header files.
Defaults to h.
Other useful values might be hh or hxx.

	C_header_utility

	A header file with shared Shroud internal typedefs for the library.
Default is types{library}.{C_header_filename_suffix}.

	C_impl_filename

	Name of generated C++ implementation file for the library.
Defaulted from expansion of option C_impl_filename_library_template.

	C_impl_filename_suffix:

	Suffix added to C implementation files.
Defaults to cpp.
Other useful values might be cc or cxx.

	C_impl_utility

	A implementation file with shared Shroud helper functions.
Typically routines which are implemented in C but called from
Fortran via BIND(C). The must have global scope.
Default is util{library}.{C_header_filename_suffix}.

	C_local

	Prefix for C compatible local variable.
Defaults to SHC_.

	C_memory_dtor_function

	Name of function used to delete memory allocated by C or C++.

	C_name_api

	Root name that is used to create various names in the C API.
Defaulted by the C_API_case option with values
lower, upper, underscore, or preserve.
If set explicitly then C_API_case will have no effect.

May be blank for namespaces to avoid adding the name to
C_name_scope.

	C_name_scope

	Underscore delimited name of namespace, class, enumeration.
Used to ‘flatten’ nested C++ names into global C identifiers.
Ends with trailing underscore to allow the next scope to be appended.
Does not include toplevel namespace.
For example, C_name_template includes {C_prefix}{C_name_scope}{C_name_api}.

C_name_scope will replace class_name with the instantiated class_name.
which will contain a template arguments.

This is a computed using C_name_api and should not be set explicitly.

	C_result

	The name of the C wrapper’s result variable.
It must not be the same as any of the routines arguments.
It defaults to rv.

	C_string_result_as_arg

	The name of the output argument for string results.
Function which return char or std::string values return
the result in an additional argument in the C wrapper.
See also F_string_result_as_arg.

	c_temp

	Prefix for wrapper temporary working variables.
Defaults to SHT_.

	C_this

	Name of the C object argument. Defaults to self.
It may be necessary to set this if it conflicts with an argument name.

	CXX_local

	Prefix for C++ compatible local variable.
Defaults to SHCXX_.

	CXX_this

	Name of the C++ object pointer set from the C_this argument.
Defaults to SH_this.

	F_array_type

	Name of derived type used to store metadata about an array
such as its address and size.
Default value from option F_array_type_template which
defaults to {C_prefix}SHROUD_array.

	F_C_prefix

	Prefix added to name of generated Fortran interface for C routines.
Defaults to c_.

	F_capsule_data_type

	Name of derived type used to share memory information with C or C++.
Member of F_array_type.
Default value from option F_capsule_data_type_template which
defaults to {C_prefix}SHROUD_capsule_data.

Each class has a similar derived type, but with a different name
to enforce type safety.

	F_capsule_delete_function

	Name of type-bound function of F_capsule_type which will
delete the memory in the capsule.
Defaults to SHROUD_capsule_delete.

	F_capsule_final_function

	Name of function used was FINAL of F_capsule_type.
The function is used to release memory allocated by C or C++.
Defaults to SHROUD_capsule_final.

	F_capsule_type

	Name of derived type used to release memory allocated by C or C++.
Default value from option F_capsule_type_template which
defaults to {C_prefix}SHROUD_capsule.
Contains a F_capsule_data_type.

	F_derived_member

	A F_capsule_data_type use to reference C++ memory.
Defaults to cxxmem.

	F_derived_member_base

	The F_derived_member for the base class of a class.
Only single inheritance is support via the EXTENDS keyword in Fortran.

	F_filename_suffix

	Suffix added to Fortran files.
Defaults to f.
Other useful values might be F or f90.

	F_module_name

	Name of module for Fortran interface for the library.
Defaulted from expansion of option F_module_name_library_template
which is {library_lower}_mod.
Then converted to lower case.

	F_name_api

	Root name that is used to create various names in the Fortran API.
Controlled by the F_API_case option with values
lower, upper, underscore or preserve.
Used with options templates F_C_name_template, F_name_impl_template,
F_name_function_template, F_name_generic_template,
F_abstract_interface_subprogram_template, F_derived_name_template,
F_typedef_name_template.

	F_name_scope

	Underscore delimited name of namespace, class, enumeration.
Used with creating names in Fortran.
Ends with trailing underscore to allow the next scope to be appended.
Does not include toplevel namespace.

This is a computed using F_name_api and should not be set explicitly.

	F_impl_filename

	Name of generated Fortran implementation file for the library.
Defaulted from expansion of option F_impl_filename_library_template.

	F_result

	The name of the Fortran wrapper’s result variable.
It must not be the same as any of the routines arguments.
It defaults to SHT_rv (Shroud temporary return value).

	F_result_ptr

	The name of the variable used with api capptr for the
function result for arguments which create a shadow type.
Defaults to SHT_prv, pointer to return value.
Used by option C_shadow_result.

	F_string_result_as_arg

	The name of the output argument.
Function which return a char * will instead be converted to a
subroutine which require an additional argument for the result.
See also C_string_result_as_arg.

	F_this

	Name of the Fortran argument which is the derived type
which represents a C++ class.
It must not be the same as any of the routines arguments.
Defaults to obj.

	file_scope

	Used in filename creation to identify library, namespace, class.

	library

	The value of global field library.

	library_lower

	Lowercase version of library.

	library_upper

	Uppercase version of library.

	LUA_header_filename_suffix

	Suffix added to Lua header files.
Defaults to h.
Other useful values might be hh or hxx.

	LUA_impl_filename_suffix

	Suffix added to Lua implementation files.
Defaults to cpp.
Other useful values might be cc or cxx.

	LUA_module_name

	Name of Lua module for library.
{library_lower}

	LUA_name_api

	Root name that is used to create various names in the Lua API.
Defaulted by the LUA_API_case option with values
lower, upper, underscore, or preserve.
If set explicitly then LUA_API_case will have no effect.

	LUA_prefix

	Prefix added to Lua wrapper functions.

	LUA_result

	The name of the Lua wrapper’s result variable.
It defaults to rv (return value).

	LUA_state_var

	Name of argument in Lua wrapper functions for lua_State pointer.

	namespace_scope

	The current C++ namespace delimited with :: and a trailing ::.
Used when referencing identifiers: {namespace_scope}id.

	nullptr

	Set to NULL or nullptr based on option CXX_standard.
Always NULL when language is C.

	PY_ARRAY_UNIQUE_SYMBOL

	C preprocessor define used by NumPy to allow NumPy to be
imported by several source files.

	PY_header_filename_suffix

	Suffix added to Python header files.
Defaults to h.
Other useful values might be hh or hxx.

	PY_impl_filename_suffix

	Suffix added to Python implementation files.
Defaults to cpp.
Other useful values might be cc or cxx.

	PY_module_init

	Name of module and submodule initialization routine.
library and namespaces delimited by _.
Setting PY_module_name will update PY_module_init.

	PY_module_name

	Name of generated Python module.
Defaults to library name or namespace name.

	PY_module_scope

	Name of module and submodule initialization routine.
library and namespaces delimited by ..
Setting PY_module_name will update PY_module_scope.

	PY_name_impl

	Name of Python wrapper implemenation function.
Each class and namespace is implemented in its own function with file
static functions. There is no need to include the class or namespace in
this name.
Defaults to {PY_prefix}{function_name}{function_suffix}.

	PY_prefix

	Prefix added to Python wrapper functions.

	PY_result

	The name of the Python wrapper’s result variable.
It defaults to SHTPy_rv (return value).
If the function returns multiple values (due to intent(out))
and the function result is already an object (for example, a NumPy array)
then PY_result will be SHResult.

	file_scope

	library plus any namespaces.
The namespaces listed in the top level variable namespace is not included in the value.
It is assumed that library will be used to generate unique names.
Used in creating a filename.

	stdlib

	Name of C++ standard library prefix.
blank when language=c.
std:: when language=c++.

	YAML_type_filename

	Output filename for type maps for classes.

Enumeration

	cxx_value

	Value of enum from YAML file.

enum_lower

enum_name

enum_upper

enum_member_lower

enum_member_name

enum_member_upper

	flat_name

	Scoped name of enumeration mapped to a legal C identifier.
Scope operator :: replaced with _.
Used with C_enum_template.

	C_enum_member

	C name for enum member.
Computed from option C_enum_member_template.

	C_value

	Evalued value of enumeration.
If the enum does not have an explict value, it will not be present.

	C_scope_name

	Set to flat_name with a trailing undersore.
Except for non-scoped enumerations in which case it is blank.
Used with C_enum_member_template.
Does not include the enum name in member names for non-scoped enumerations.

	F_scope_name

	Value of C_scope_name converted to lower case.
Used with F_enum_member_template.

	F_enum_member

	Fortran name for enum member.
Computed from option F_enum_member_template.

	F_value

	Evalued value of enumeration.
If the enum does not have an explict value, it is the previous value plus one.

Class

	C_header_filename

	Name of generated header file for the class.
Defaulted from expansion of option C_header_filename_class_template.

	C_impl_file

	Name of generated C++ implementation file for the library.
Defaulted from expansion of option C_impl_filename_class_template.

	F_derived_name

	Name of Fortran derived type for this class.
Computed from option F_derived_name_template.

	F_name_assign

	Name of method that controls assignment of shadow types.
Used to help with reference counting.

	F_name_associated

	Name of method to report if shadow type is associated.
If the name is blank, no function is generated.

	F_name_final

	Name of function used in FINAL for a class.

	F_name_instance_get

	Name of method to get type(C_PTR) instance pointer from wrapped class.
Defaults to get_instance.
If the name is blank, no function is generated.

	F_name_instance_set

	Name of method to set type(C_PTR) instance pointer in wrapped class.
Defaults to set_instance.
If the name is blank, no function is generated.

	cxx_class

	The name of the C++ class from the YAML input file.
Used in generating names for C and Fortran and filenames.
When the class is templated, it willl be converted to a legal identifier
by adding the template_suffix or a sequence number.

When cxx_class is set in the YAML file for a class, its value will be
used in class_scope, C_name_scope, F_name_scope and F_derived_name.

	cxx_type

	The namespace qualified name of the C++ class, including information
from template_arguments, ex. std::vector<int>.
Same as cxx_class if template_arguments is not defined.
Used in generating C++ code.

	class_scope

	Used to to access class static functions.
Blank when not in a class.
{cxx_class}::

	C_prefix

	Prefix for C wrapper functions.
The prefix helps to ensure unique global names.
Defaults to the first three letters of library_upper.

	PY_helper_prefix

	Prefix added to helper functions for the Python wrapper.
This allows the helper functions to have names which will not conflict
with any wrapped routines.
When option PY_write_helper_in_util is True, C_prefix will
be prefixed to the value to ensure the helper functions will not
conflict with any routines in other wrapped libraries.

	PY_type_obj

	Name variable which points to C or C++ memory.
Defaults to obj.

	PY_type_dtor

	Pointer to information used to release memory.

	PY_PyTypeObject

	Name of PyTypeObject variable for a C++ class.
Computed from option PY_PyTypeObject.

	PY_PyTypeObject_base

	The name of PyTypeObject variable for base class of C++ class.
Only single inheritance is support via the tp_base field of PyTypeObject struct.

Function

	C_call_list

	Comma delimited list of function arguments.

	C_name

	Name of the C wrapper function.
Defaults to evaluation of option C_name_template.

	C_prototype

	C prototype for the function.
This will include any arguments required by annotations or options,
such as length or F_string_result_as_arg.

	C_return_type

	Return type of the C wrapper function.
If the return_this field is true, then set to void.

Set to function’s return type.

	CXX_template

	The template component of the function declaration.
<{type}>

	CXX_this_call

	How to call the function.
{CXX_this}-> for instance methods and blank for library functions.

	F_arg_c_call

	Comma delimited arguments to call C function from Fortran.

	F_arguments

	Set from option F_arguments or generated from YAML decl.

	F_C_arguments

	Argument names to the bind(C) interface for the subprogram.
Arguments are tab delimited to aid in creating continuations.

	F_C_call

	The name of the C function to call. Usually F_C_name, but it may
be different if calling a generated routine.
This can be done for functions with string arguments.

	F_C_name

	Name of the Fortran BIND(C) interface for a C function.
Defaults to the lower case version of F_C_name_template.

	F_C_pure_clause

	TODO

	F_C_result_clause

	Result clause for the bind(C) interface.

	F_C_subprogram

	subroutine or function for the bind(C) interface.
The C wrapper funtion may be different Fortran wrapper function since
some function results may be converted into arguments.

	F_C_var

	Name of dummy argument in the bind(C) interface.

	F_pure_clause

	For non-void function, pure if the pure annotation is added or
the function is const and all arguments are intent(in).

	F_name_function

	The name of the F_name_impl subprogram when used as a
type procedure.
Defaults to evaluation of option F_name_function_template.

	F_name_generic

	Defaults to evaluation of option F_name_generic_template.

	F_name_impl

	Name of the Fortran implementation function.
Defaults to evaluation of option F_name_impl_template .

	F_result_clause

	`` result({F_result})`` for functions.
Blank for subroutines.

	f_c_suffix

	Set by Shroud to allow the Fortran wrapper to call a C wrapper
with additional mangling. Usually set to the value of
C_bufferify_suffix or C_cfi_suffix.

	function_name

	Name of function in the YAML file.

	function_suffix

	String append to a generated function name.
Useful to distinguish overloaded function and functions with default arguments.
Defaults to a sequence number with a leading underscore
(e.g. _0, _1, …) but can be set
by using the function field function_suffix.
Multiple suffixes may be applied – overloaded with default arguments.

	LUA_name

	Name of function as known by LUA.
Defaults to evaluation of option LUA_name_template.

	template_suffix

	String which is append to the end of a generated function names
to distinguish template instatiations.
Default values generated by Shroud will include a leading underscore.
i.e _int or _0.

	underscore_name

	function_name converted from CamelCase to snake_case.

Argument

c_array_shape

c_array_size

	c_array_size2

	The dimension attributes multiplied together.

	c_char_len

	The value of the len attribute.
It willl be evalued in the C wrapper.
Defaults to 0 to indicate no length given.

	c_blanknull

	Used as argument to ShroudStrAlloc to determine if a
blank string, trimmed length is 0, should be a NULL pointer
instead of an empty C string – '\0'.
Set via attribute +blanknull on a const char * argument.
Should be 0 or 1.

	c_const

	const if argument has the const attribute.

	c_deref

	Used to dereference c_var.
* if it is a pointer, else blank.

	c_var

	The C name of the argument.

	c_var_cdesc

	Name of variable of type ….

c_var_cdesc2

c_var_extents

c_var_lower

	chelper_*

	Helper name for a function.
Each name in statements c_helper will create a format name
which starts with chelper_ and end with the helper name.
It will contain the name of the C function for the helper.
Used by statements c_pre_call and c_post_call statements.

	cxx_addr

	Syntax to take address of argument.
& or blank.

	cxx_nonconst_ptr

	A non-const pointer to cxx_addr using const_cast in C++ or
a cast for C.

	cxx_member

	Syntax to access members of cxx_var.
If cxx_local_var is object, then set to .;
if pointer, then set to ->.

	cxx_T

	The template parameters for templated arguments.
std::vector<{cxx_T}>

	cxx_type

	The C++ type of the argument.

	cxx_var

	Name of the C++ variable.

	size_var

	Name of variable which holds the size of an array in the
Python wrapper.

fmtc

Format strings used with C wrappers.
Set for each argument.

fmtf

Format strings used with Fortran wrappers.
Set for each argument.

	c_var

	The name of the argument passed to the C wrapper.
This is initially the same as f_var but when the
statement field c_local_var is true, another name
will be generated of the form SH_{f_var}.
A declaration will also be added using typemap.f_c_type.

	default_value

	The value of a C++ default value argument.

	f_array_allocate

	Fortran shape expression used with ALLOCATE statement when
dimension attribute is set.
For example, attribute +dimension(10) will create (10).

	f_array_shape

	Shape of array for use with c_f_pointer.
For example, attribute +dimension(10) will create``,t SHT_rv_cdesc%shape(1:1)``.
The leading comma is used since scalar will not add a SHAPE argument to c_f_pointer.

	f_assumed_shape

	Set when rank attribute is set to the corresponding shape.
rank=1 sets to (:),
rank=2 sets to (:,:), etc.
May also be set to (..) when attribute +dimension(..) is used
and option F_CFI is True.

	f_c_module_line

	Typemap.f_c_module in a format usable by FStmts.f_module_line.
The dictionary is converted into the string.

	f_capsule_data_type

	The name of the derived type used to share memory information with C or C++.
F_capsule_data_type for the argument type.

	f_cdesc_shape

	Used to assign the rank of a Fortran variable to a cdesc variable.
It will be blank for a scalar.
ex: \nSHT_arg_cdesc%shape(1:1) = shape(arg)

	f_char_len

	Defaults to : for defered length used with allocatable variables.
Used in statements as character({f_char_len).

	f_char_type

	Character type used in ALLOCATE statements.
Based on len attributes.
Defaults to blank for CHARACTER types which have an explicit length
in the type declaration - CHARACTER(20)..
Otherwise set to character(len={c_var_cdesc}%elem_len) :: `` which
uses the length computed by the C wrapper and stored in elem_len.
For example, find the maximum length of strings in a ``char ** argument.
Used in statements as allocate({f_char_type}(f_var}).

f_declare_shape_prefix

f_declare_shape_array

f_get_shape_array

	f_kind

	Value from typemap. ex C_INT.
Can be used in CStmts.f_module_line.

f_pointer_shape

f_shape_var

	f_type

	Value from typemap. ex integer(C_INT).

	f_var

	Fortran variable name for argument.

	fhelper_*

	Helper name for a function.
Each name in statements f_helper will create a format name
which starts with fhelper_ and end with the helper name.
It will contain the name of the Fortran function for the helper.
Used by statements f_pre_call and f_post_call statements.

	i_dimension

	Dimension used in bind(C) interface.
May be assumed-size, (*) or assumed-rank, (..).

	i_module_line

	Used with Fortran interface.

	i_type

	Used with Fortran interface.

	size

	Expression to compute size of array argument using SIZE intrinsic.

fmtl

Format strings used with Lua wrappers.

fmtpy

Format strings used with Python wrappers.

	array_size

	Dimensions multipled together.
dimension(2,3) creates (2)*(3).

	rank

	Attribute value for rank.

Result

	cxx_rv_decl

	Declaration of variable to hold return value for function.

Variable

	PY_struct_context

	Prefix used to to access struct/class variables.
Includes trailing syntax to access member in a struct
i.e. . or ->.
self->obj->.

Types Map

Types describe how to handle arguments from Fortran to C to C++. Then
how to convert return values from C++ to C to Fortran.

Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a standardized
way to generate procedure and derived-type declarations and global
variables which are interoperable with C (ISO/IEC 9899:1999). The
bind(C) attribute has been added to inform the compiler that a symbol
shall be interoperable with C; also, some constraints are added. Note,
however, that not all C features have a Fortran equivalent or vice
versa. For instance, neither C’s unsigned integers nor C’s functions
with variable number of arguments have an equivalent in
Fortran. [1]

	forward

	Forward declaration.
Defaults to None.

	typedef

	Initialize from existing type
Defaults to None.

	f_return_code

	Fortran code used to call function and assign the return value.
Defaults to None.

	f_to_c

	Expression to convert Fortran type to C type.
If this field is set, it will be used before f_cast.
Defaults to None.

Doxygen

Used to insert directives for doxygen for a function.

	brief

	Brief description.

	description

	Full description.

	return

	Description of return value.

Patterns

	C_error_pattern

	Inserted after the call to the C++ function in the C wrapper.
Format is evaluated in the context of the result argument.
c_var, c_var_len refer to the result argument.

	C_error_pattern_buf

	Inserted after the call to the C++ function in the buffer C wrapper
for functions with string arguments.
Format is evaluated in the context of the result argument.

	PY_error_pattern

	Inserted into Python wrapper.

Footnotes

[1]
https://gcc.gnu.org/onlinedocs/gfortran/Interoperability-with-C.html

 Releases

Releases

Notes to help migrate between releases.

Unreleased

	Rename some fields in Statements to allow C and Fortran entries to exist
in the same group by consistently using a c_, i_ or f_ prefix.
This allows a single group to contains all the fields used for more complex
conversions making it easier to follow the flow.

This will change the name of fields in fstatements in an input YAML file.
These are used to changed the default behavior of a wrapper.

- decl: void vector_iota_out_with_num(std::vector<int> &arg+intent(out))
 fstatements:
 c:
 c_return_type: long
 c_return:
 - return SHT_arg_cdesc->size;

c statements

	Old Name

	New Name

	arg_call

	c_arg_call

	pre_call

	c_pre_call

	call

	c_call

	post_call

	c_post_call

	final

	c_final

	ret

	c_return

	temps

	c_temps

	local

	c_local

	f_arg_decl

	i_arg_decl

	f_result_decl

	i_result_decl

	f_result_var

	i_result_var

	f_module

	i_module

	f_import

	i_import

f statements

	Old Name

	New Name

	need_wrapper

	f_need_wrapper

	arg_name

	f_arg_name

	arg_decl

	f_arg_decl

	arg_c_call

	f_arg_call

	declare

	f_declare

	pre_call

	f_pre_call

	call

	f_call

	post_call

	f_post_call

	result

	f_result

	temps

	f_temps

	local

	f_local

	Added format field f_c_suffix. Used in format fields
**C_name_template* and F_C_name_template* to allow Fortran wrapper
to call a C function with additional mangling such as
**C_cfi_suffix and C_bufferify_suffix. Previously this was
appended directly to format field *function_suffix. If
**C_name_template* or F_C_name_template* are explicitly set in the
YAML file then *f_c_suffix should be included in the value.

	Renamed format fields hnamefunc. These fields were added from the
statement fields c_helper and f_helper, each a blank
delimited list of names. A format field was added for each name with
a 0-based suffix corresponding to the position in the list.
Now, the format fields have the prefix of chelper_ or fhelper_
followed by the helpers name. For example, fhelper_copy_array.
This makes it easier to match the corresponding helper and will help
when using statement mixin groups since the order of names will no
longer matter.

v0.13.0

Changes

	Some generated wrapper names have been changed to be more consistent.
Added format field F_name_api. It is controlled by option
F_API_case which may be set to lower, upper, underscore or
preserve. Uses of format field underscore_name should be
changed to F_name_api. It’s often used in name options such as
F_name_impl_template and F_name_generic_template.

Likewise, C API names are controlled by option C_name_api. The
default is preserve. The previous behavior can be restored by
setting option C_API_case to underscore.

F_API_case defaults to underscore since Fortran is case insensitive.
F_C_case defaults to preserve to make the C API closer to the C++ API.

	Changed the name of C and Python function splicer to use function_name instead
of underscore_name to correspond to C++ library names.

	The C_memory_dtor_function is now written to the utility file,
C_impl_utility. This function contains code to delete memory from
shadow classes. Previously it was written to file C_impl_filename.
In addition, some helper functions are also written into this file.
This may require changes to Makefiles to ensure this file is compiled.

	A single capsule derived type is created in the Fortran wrapper
instead of one per class. This is considered an implementation
detail and a user of the wrapper will not access them directly.
However, it may show up in splicer code. It is used to pass values
from the Fortran wrapper to the C wrapper. The old type names may
of been referenced in explicit splicer code. In that case the name
will need to be changed. The format field
F_capsule_data_type_class is replaced by F_capsule_data_type.
The C wrapper continues to create a capsule struct for each class
as a form of type safety in the C API.

	Class instance arguments which are passed by value will now pass the
shadow type by reference. This allows the addr and idtor fields to be
changed if necessary by the C wrapper.

	Replaced the additional_interfaces splicer with additional_declarations.
This new splicer is outside of an interface block and can be used to add
add a generic interface that could not be added to additional_interfaces.
Existing additional_interfaces splicers can be converted to
additional_declarations by wrapping the splicer with
INTERFACE/END INTERFACE.

New Features

	Added support for C++ class inheritance.
See Class Inheritance

	Added the ability to treat a struct as a class.
See Object-oriented C

	Added the ability to declare members of a struct on
individual decl lines in the YAML file similar to how
class members are defined. Before the struct was defined
in a single decl:.

	Allow structs to be templated.

	Added the ability to declare variables using the enum keyword.
C++ creates a type for each enumeration.

	Generate generic interface which allows a scalar or array to be
passed for an argument.

	Process assumed-rank dimension attribute, dimension(..).
Create a generic interface using scalar and each rank.

	Added some support for Futher Interoperability with C.
Used when option F_CFI is True (C/Fortran Interoperability).

	Support deref(pointer) for char * and std::string functions.
Requires at least gfortran 6.1.0

	Added option F_trim_char_in. Controls where CHARACTER arguments
are NULL terminated. If True then terminated in Fortran else in C.

	Added attribute +blanknull to convert a blank Fortran string into
a NULL pointer instead of a 1-d buffer with '/0'.
Used with const char * arguments.
This can be defaulted to True with the F_blanknull option.

	Added file_code dictionary to input YAML file. It contains
directives to add header file and USE statements into generated files.
These are collated with headers and USE statements added by typemaps,
statements and helpers to avoid duplication.

	Allow typemaps with base as integer and real to be added to the
input YAML file. This allows kind parameters to be defined via splicers
then used by a typemap. i.e. integer(INDEXTYPE)

	Added option C_shadow_result. If true, the C wrapper will return a pointer
to the capsule holding the function result. The capsule is also passed
as an argument. If false the function is void.

	The getter for a class member function will return a Fortran pointer if
the dimension attribute is added to the declaration.
Likewise, the setter will expect an array of the same rank as dimension.
Getter and setters will also be generated for struct fields which are pointers
to native types. Option F_struct_getter_setter can be used to control their
creation.

	Added ability to add splicer to typedef declarations.
For example, to use the C preprocessor to set the type of the typedef.
See typedefs.yaml for an example.

	Added support for out arguments which return a reference to a std::vector
or pointer to an array of std::string.

	Create C and Fortran wrappers for typedef statements.
Before typedef was treated as an alias. typedef int TypeID would
substitute integer(C_INT) for every use of TypeID in the Fortran wrapper.
Now a parameter is created: integer, parameter :: type_id = C_INT.
Used as: integer(type_id) :: arg.

Fixed

	Order of header files in cxx_header is preserved in the generated code.

	Create a generic interface even if only one decl is in the fortran_generic list.

	generic_function now creates a C wrapper for each Fortran wrapper.
This causes each Fortran interface to bind to a different C function which
fixes a compile error with xlf.

	Add generic interfaces for class methods. Generic functions where only being added
to the type-bound procedures. class_generic(obj) now works instead of only
obj%generic().

	Add continuations on Fortran IMPORT statements.

	Support an array of pointers - void **addr+rank(1).

	Fix Fortran wrapper for intent(INOUT) for void **.

	Promote wrap options (ex wrap_fortran) up to container when True
(library, class, namespace). This allows wrap_fortran to be False at
the global level and set True on a function and get a wrapper.
Before a False at the global level would never attempt to do any
wrapping.

	Better support for std::vector with pointer template arguments.
For examples, <const double *>.

	Parse class, struct and enum as part of declaration.
This allows typedef struct tag name to be parsed properly.

	Create type table earlier in parse. This allows recursive structs such as
struct point { struct point *next; } to be parsed.

	Fixed issues in converting function names from CamelCase

	Remove redundant underscore
Create_Cstruct_as_class was c_create__cstruct_as_class now c_create_cstruct_as_class

	Add missing underscore
AFunction was afunction now a_function.

 Fortran Previous Work

Fortran Previous Work

Communicating between languages has a long history.

Babel

https://computation.llnl.gov/projects/babel-high-performance-language-interoperability
Babel parses a SIDL (Scientific Interface Definition Language) file to
generate source. It is a hub-and-spokes approach where each language
it supports is mapped to a Babel runtime object. The last release was
2012-01-06. http://en.wikipedia.org/wiki/Babel_Middleware

Cfortran.h

Used with Fortran 77 and C.

	https://www-zeus.desy.de/~burow/cfortran/

	https://cfortran.sourceforge.net/

Chasm

http://chasm-interop.sourceforge.net/ - This page is dated July 13, 2005

Chasm is a tool to improve C++ and Fortran 90 interoperability. Chasm
parses Fortran 90 source code and automatically generates C++ bridging
code that can be used in C++ programs to make calls to Fortran
routines. It also automatically generates C structs that provide a
bridge to Fortran derived types. Chasm supplies a C++ array descriptor
class which provides an interface between C and F90 arrays. This
allows arrays to be created in one language and then passed to and
used by the other
language. http://www.cs.uoregon.edu/research/pdt/users.php

	
	CHASM: Static Analysis and Automatic Code Generation for Improved Fortran 90 and C++ Interoperability [http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-01-4955]

	C.E. Rasmussen, K.A. Lindlan, B. Mohr, J. Striegnitz

	Bridging the language gap in scientific computing: the Chasm approach [https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.909] C. E. Rasmussen, M. J. Sottile, S. S. Shende, A. D. Malony (2005)

wrap

https://github.com/scalability-llnl/wrap

a PMPI wrapper generator

Trilinos

http://trilinos.org/

Trilonos wraps C++ with C, then the Fortran over the C. Described in the book Scientific Software Design. http://www.amazon.com/Scientific-Software-Design-The-Object-Oriented/dp/0521888131

	On the object-oriented design of reference-counted shadow objects [https://dl.acm.org/citation.cfm?doid=1985782.1985786] Karla Morris, Damian W.I. Rouson, Jim Xia (2011)

	This Isn’t Your Parents’ Fortran: Managing C++ Objects with Modern Fortran [http://ieeexplore.ieee.org/document/6159199] Damian Rouson, Karla Morris, Jim Xia (2012)

Directory packages/ForTrilinos/src/skeleton has a basic template which must be edited to create a wrapper for a class.

Exascale Programming: Adapting What We Have Can (and Must) Work

In 2009 and 2010, the C++ based Trilinos project developed Fortran
interface capabilities, called ForTrilinos. As an object-oriented (OO)
collection of libraries, we assumed that the OO features of Fortran
2003 would provide us with natural mappings of Trilinos classes into
Fortran equivalents. Over the two-year span of the ForTrilinos effort,
we discovered that compiler support for 2003 features was very
immature. ForTrilinos developers quickly came to know the handful of
compiler developers who worked on these features and, despite close
collaboration with them to complete and stabilize the implementation
of Fortran 2003 features (in 2010), ForTrilinos stalled and is no
longer developed.

http://www.hpcwire.com/2016/01/14/24151/

https://github.com/Trilinos/ForTrilinos
https://www.researchgate.net/project/ForTrilinos

This is the new effort to provide Fortran interfaces to Trilinos
through automatic code generation using SWIG. The previous effort
(ca. 2008-2012) can be obtained by downloading Trilinos releases prior
to 12.12.

https://trilinos.github.io/ForTrilinos/files/ForTrilinos_Design_Document.pdf

SWIG

The custom version of swig available at https://github.com/swig-fortran/swig

	https://github.com/swig-fortran/flibcpp

	http://www.icl.utk.edu/~luszczek/conf/2019/siam_cse/siam-cse-johnsonsr.pdf

	https://info.ornl.gov/sites/publications/Files/Pub127965.pdf

	Documenting automated Fortran-C++ bindings with SWIG [https://www.osti.gov/biblio/1557490]

	IDEAS-ECP Webinar: Automated Fortran-C++ Bindings for Large-Scale Scientific Applications [https://www.youtube.com/watch?v=mC67NVuz6WI]

MPICH

MPICH uses a custom perl scripts which has routine names and types in the source.

http://git.mpich.org/mpich.git/blob/HEAD:/src/binding/fortran/use_mpi/buildiface

GTK

gtk-fortran uses a python script which parse the C header files to generate the Fortran.

https://github.com/jerryd/gtk-fortran/blob/master/src/cfwrapper.py
https://github.com/vmagnin/gtk-fortran/wiki
https://github.com/vmagnin/gtk-fortran/wiki/How-gtk-fortran-is-generated

CDI

CDI is a C and Fortran Interface to access Climate and NWP model Data. https://code.zmaw.de/projects/cdi

“One part of CDI[1] is a such generator. It still has some rough edges and we haven’t yet decided what to do about functions returning char * (it seems like that will need some wrapping unless we simply return TYPE(c_ptr) and let the caller deal with that) but if you’d like to have a starting point in Ruby try interfaces/f2003/bindGen.rb from the tarball you can download” https://groups.google.com/d/msg/comp.lang.fortran/oadwd3HHtGA/J8DD8kGeVw8J

Forpy

This is a Fortran interface over the Python API written using the metaprogramming tool Fypp.

	Forpy: A library for Fortran-Python interoperability [https://github.com/ylikx/forpy]

	Fypp — Python powered Fortran metaprogramming [https://github.com/aradi/fypp]

CNF

http://www.starlink.ac.uk/docs/sun209.htx/sun209.html

The CNF package comprises two sets of software which ease the task of
writing portable programs in a mixture of FORTRAN and C. F77 is a set
of C macros for handling the FORTRAN/C subroutine linkage in a
portable way, and CNF is a set of functions to handle the difference
between FORTRAN and C character strings, logical values and pointers
to dynamically allocated memory.

h2m-AutoFortran

https://github.com/Kaiveria/h2m-Autofortran-Tool

The h2m-AutoFortran tool is designed to allow easy calls to C
routines from Fortran programs. Given a header file in standard C,
h2m will produce a Fortran module providing function interfaces
which maintain interoperability with C. Features for which there
are no Fortran equivalents will not be translated and warnings
will be written to standard error.
The h2m-AutoFortran tool is built into Clang, the LLVM C compiler.
During translation, the Clang abstract syntax tree (AST) is used to
assemble information about the header file.

Links

	Technical Specification ISO/IEC TS 29113:2012 [http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45136]

	Generating C Interfaces [http://fortranwiki.org/fortran/show/Generating+C+Interfaces]

	Shadow-object interface between Fortran95 and C++ [http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=753048] Mark G. Gray, Randy M. Roberts, and Tom M. Evans (1999)

	Generate C interface from C++ source code using Clang libtooling [http://samanbarghi.com/blog/2016/12/06/generate-c-interface-from-c-source-code-using-clang-libtooling/]

	Memory leaks in derived types revisited [https://dl.acm.org/citation.cfm?id=962183] G. W. Stewart (2003)

	A General Approach to Creating Fortran Interface for C++ Application Libraries [https://link.springer.com/chapter/10.1007/3-540-27912-1_14]

	C, Fortran, and single-character strings [https://lwn.net/Articles/791393/]

	Emulating Multiple Inheritance in Fortran 2003/2008 [https://www.hindawi.com/journals/sp/2015/126069/]

 Python Previous Work

Python Previous Work

There a several available tools to creating a Python interface to a C or C++ library.

Ctypes

	http://docs.python.org/lib/module-ctypes.html

Pros

	No need for compiler.

Cons

	Difficult wrapping C++ due to mangling and object ABI.

SWIG

	http://www.swig.org/

PyBindgen

	https://github.com/gjcarneiro/pybindgen

	http://pybindgen.readthedocs.io/en/latest/

Cython

	http://cython.org

	https://cython.readthedocs.io/en/latest/

http://blog.kevmod.com/2020/05/python-performance-its-not-just-the-interpreter/

I ran Cython (a Python->C converter) on the previous benchmark, and it
runs in exactly the same amount of time: 2.11s. I wrote a simplified C
extension in 36 lines compared to Cython’s 3600, and it too runs in
2.11s.

SIP

Sip was developed to create PyQt.

	https://www.riverbankcomputing.com/software/sip/intro

Shiboken

Shiboken was developed to create PySide.

	https://wiki.qt.io/Qt_for_Python

	http://doc.qt.io/qtforpython/shiboken2/contents.html

Boost Python

	https://www.boost.org/doc/libs/1_66_0/libs/python/doc/html/index.html

Pybind11

	https://github.com/pybind/pybind11

	https://pybind11.readthedocs.io/en/stable/

Links

	Interfacing with C - Scipy lecture notes [https://www.scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html]

	SciPy Cookbook [https://scipy-cookbook.readthedocs.io/]

 Future Work

Future Work

	complex

	pointers to pointers and in particular char ** are not supported.
An argument like Class **ptr+intent(out) does not work.
Instead use a function which return a pointer to Class *

	reference counting and garbage collection

	Support for Further Interoperability of Fortran with C.
This includes the ISO_Fortran_binding.h header file.

The copying of strings solves the blank-filled vs null-terminated
differences between Fortran and C and works well for many strings.
However, if a large buffer is passed, it may be desirable to avoid the
copy.

There is some initial work to support Python and Lua wrappers.

Possible Future Work

Use a tool to parse C++ and extract info.

	https://github.com/CastXML/CastXML

	https://pypi.python.org/pypi/pygccxml

	Wrapping C and C++ Libraries with CastXML | SciPy 2015 | Brad King, Bill Hoffman, Matthew McCormick https://www.youtube.com/watch?v=O2lBgtaDdyk&index=20&list=PLYx7XA2nY5Gcpabmu61kKcToLz0FapmHu

 Sample Fortran Wrappers

Sample Fortran Wrappers

This chapter gives details of the generated code.
It’s intended for users who want to understand the details
of how the wrappers are created.

All of these examples are derived from tests in the regression
directory.

No Arguments

C library function in clibrary.c:

void NoReturnNoArguments(void)
{
 strncpy(last_function_called, "Function1", MAXLAST);
 return;
}

clibrary.yaml:

- decl: void NoReturnNoArguments()

Fortran calls C via the following interface:

interface
 subroutine no_return_no_arguments() &
 bind(C, name="NoReturnNoArguments")
 implicit none
 end subroutine no_return_no_arguments
end interface

If wrapping a C++ library, a function with a C API will be created
that Fortran can call.

void TUT_NoReturnNoArguments(void)
{
 // splicer begin function.NoReturnNoArguments
 tutorial::NoReturnNoArguments();
 // splicer end function.NoReturnNoArguments
}

Fortran usage:

use tutorial_mod
call no_return_no_arguments

The C++ usage is similar:

#include "tutorial.hpp"

tutorial::NoReturnNoArguments();

Numeric Types

PassByValue

C library function in clibrary.c:

double PassByValue(double arg1, int arg2)
{
 strncpy(last_function_called, "PassByValue", MAXLAST);
 return arg1 + arg2;
}

clibrary.yaml:

- decl: double PassByValue(double arg1, int arg2)

Both types are supported directly by the iso_c_binding module
so there is no need for a Fortran function.
The C function can be called directly by the Fortran interface
using the bind(C) keyword.

Fortran calls C via the following interface:

interface
 function pass_by_value(arg1, arg2) &
 result(SHT_rv) &
 bind(C, name="PassByValue")
 use iso_c_binding, only : C_DOUBLE, C_INT
 implicit none
 real(C_DOUBLE), value, intent(IN) :: arg1
 integer(C_INT), value, intent(IN) :: arg2
 real(C_DOUBLE) :: SHT_rv
 end function pass_by_value
end interface

Fortran usage:

real(C_DOUBLE) :: rv_double
rv_double = pass_by_value(1.d0, 4)
call assert_true(rv_double == 5.d0)

PassByReference

C library function in clibrary.c:

void PassByReference(double *arg1, int *arg2)
{
 strncpy(last_function_called, "PassByReference", MAXLAST);
 *arg2 = *arg1;
}

clibrary.yaml:

- decl: void PassByReference(double *arg1+intent(in), int *arg2+intent(out))

Fortran calls C via the following interface:

interface
 subroutine pass_by_reference(arg1, arg2) &
 bind(C, name="PassByReference")
 use iso_c_binding, only : C_DOUBLE, C_INT
 implicit none
 real(C_DOUBLE), intent(IN) :: arg1
 integer(C_INT), intent(OUT) :: arg2
 end subroutine pass_by_reference
end interface

Example usage:

integer(C_INT) var
call pass_by_reference(3.14d0, var)
call assert_equals(3, var)

Sum

C++ library function from pointers.cpp:

void Sum(int len, const int *values, int *result)
{
 int sum = 0;
 for (int i=0; i < len; i++) {
	sum += values[i];
 }
 *result = sum;
 return;
}

pointers.yaml:

- decl: void Sum(int len +implied(size(values)),
 int *values +rank(1)+intent(in),
 int *result +intent(out))

The POI prefix to the function names is derived from
the format field C_prefix which defaults to the first three letters
of the library field, in this case pointers.
This is a C++ file which provides a C API via extern "C".

wrappointers.cpp:

int POI_sumFixedArray(void)
{
 // splicer begin function.sumFixedArray
 int SHC_rv = sumFixedArray();
 return SHC_rv;
 // splicer end function.sumFixedArray
}

Fortran calls C via the following interface:

interface
 subroutine c_sum(len, values, result) &
 bind(C, name="POI_Sum")
 use iso_c_binding, only : C_INT
 implicit none
 integer(C_INT), value, intent(IN) :: len
 integer(C_INT), intent(IN) :: values(*)
 integer(C_INT), intent(OUT) :: result
 end subroutine c_sum
end interface

The Fortran wrapper:

interface
 function sum_fixed_array() &
 result(SHT_rv) &
 bind(C, name="POI_sumFixedArray")
 use iso_c_binding, only : C_INT
 implicit none
 integer(C_INT) :: SHT_rv
 end function sum_fixed_array
end interface

Example usage:

integer(C_INT) rv_int
call sum([1,2,3,4,5], rv_int)
call assert_true(rv_int .eq. 15, "sum")

truncate_to_int

Sometimes it is more convenient to have the wrapper allocate an
intent(out) array before passing it to the C++ function. This can
be accomplished by adding the deref(allocatable) attribute.

C++ library function from pointers.c:

void truncate_to_int(double *in, int *out, int size)
{
 int i;
 for(i = 0; i < size; i++) {
 out[i] = in[i];
 }
}

pointers.yaml:

- decl: void truncate_to_int(double * in +intent(in) +rank(1),
 int * out +intent(out)
 +deref(allocatable)+dimension(size(in)),
 int sizein +implied(size(in)))

Fortran calls C via the following interface:

interface
 subroutine c_truncate_to_int(in, out, sizein) &
 bind(C, name="truncate_to_int")
 use iso_c_binding, only : C_DOUBLE, C_INT
 implicit none
 real(C_DOUBLE), intent(IN) :: in(*)
 integer(C_INT), intent(OUT) :: out(*)
 integer(C_INT), value, intent(IN) :: sizein
 end subroutine c_truncate_to_int
end interface

The Fortran wrapper:

subroutine truncate_to_int(in, out)
 use iso_c_binding, only : C_DOUBLE, C_INT
 real(C_DOUBLE), intent(IN) :: in(:)
 integer(C_INT), intent(OUT) :: out(:)
 integer(C_INT) :: SH_sizein
 ! splicer begin function.truncate_to_int
 SH_sizein = size(in,kind=C_INT)
 call c_truncate_to_int(in, out, SH_sizein)
 ! splicer end function.truncate_to_int
end subroutine truncate_to_int

Example usage:

integer(c_int), allocatable :: out_int(:)
call truncate_to_int([1.2d0, 2.3d0, 3.4d0, 4.5d0], out_int)

Numeric Pointers

getRawPtrToFixedArray

C++ library function from pointers.c:

void getRawPtrToFixedArray(int **count)
{
 *count = (int *) &global_fixed_array;
}

pointers.yaml:

- decl: void getRawPtrToFixedArray(int **count+intent(out)+deref(raw))

Fortran calls C via the following interface:

interface
 subroutine get_raw_ptr_to_fixed_array(count) &
 bind(C, name="getRawPtrToFixedArray")
 use iso_c_binding, only : C_PTR
 implicit none
 type(C_PTR), intent(OUT) :: count
 end subroutine get_raw_ptr_to_fixed_array
end interface

Example usage:

type(C_PTR) :: cptr_array
call get_raw_ptr_to_fixed_array(cptr_array)

getPtrToScalar

C++ library function from pointers.c:

void getPtrToScalar(int **nitems)
{
 *nitems = &global_int;
}

pointers.yaml:

- decl: void getPtrToScalar(int **nitems+intent(out))

This is a C file which provides the bufferify function.

wrappointers.c:

void POI_getPtrToScalar_bufferify(POI_SHROUD_array *SHT_nitems_cdesc)
{
 // splicer begin function.getPtrToScalar_bufferify
 int *nitems;
 getPtrToScalar(&nitems);
 SHT_nitems_cdesc->cxx.addr = nitems;
 SHT_nitems_cdesc->cxx.idtor = 0;
 SHT_nitems_cdesc->addr.base = nitems;
 SHT_nitems_cdesc->type = SH_TYPE_INT;
 SHT_nitems_cdesc->elem_len = sizeof(int);
 SHT_nitems_cdesc->rank = 0;
 SHT_nitems_cdesc->size = 1;
 // splicer end function.getPtrToScalar_bufferify
}

Fortran calls C via the following interface:

interface
 subroutine c_get_ptr_to_scalar(nitems) &
 bind(C, name="getPtrToScalar")
 use iso_c_binding, only : C_PTR
 implicit none
 type(C_PTR), intent(OUT) :: nitems
 end subroutine c_get_ptr_to_scalar
end interface

The Fortran wrapper:

subroutine get_ptr_to_scalar(nitems)
 use iso_c_binding, only : C_INT, c_f_pointer
 integer(C_INT), intent(OUT), pointer :: nitems
 ! splicer begin function.get_ptr_to_scalar
 type(POI_SHROUD_array) :: SHT_nitems_cdesc
 call c_get_ptr_to_scalar_bufferify(SHT_nitems_cdesc)
 call c_f_pointer(SHT_nitems_cdesc%base_addr, nitems)
 ! splicer end function.get_ptr_to_scalar
end subroutine get_ptr_to_scalar

Assigning to iscalar will modify the C++ variable.
Example usage:

integer(C_INT), pointer :: iscalar
call get_ptr_to_scalar(iscalar)
iscalar = 0

getPtrToDynamicArray

C++ library function from pointers.c:

void getPtrToDynamicArray(int **count, int *len)
{
 *count = (int *) &global_fixed_array;
 *len = sizeof(global_fixed_array)/sizeof(int);
}

pointers.yaml:

- decl: void getPtrToDynamicArray(int **count+intent(out)+dimension(ncount),
 int *ncount+intent(out)+hidden)

This is a C file which provides the bufferify function.

wrappointers.c:

void POI_getPtrToDynamicArray_bufferify(
 POI_SHROUD_array *SHT_count_cdesc)
{
 // splicer begin function.getPtrToDynamicArray_bufferify
 int *count;
 int ncount;
 getPtrToDynamicArray(&count, &ncount);
 SHT_count_cdesc->cxx.addr = count;
 SHT_count_cdesc->cxx.idtor = 0;
 SHT_count_cdesc->addr.base = count;
 SHT_count_cdesc->type = SH_TYPE_INT;
 SHT_count_cdesc->elem_len = sizeof(int);
 SHT_count_cdesc->rank = 1;
 SHT_count_cdesc->shape[0] = ncount;
 SHT_count_cdesc->size = SHT_count_cdesc->shape[0];
 // splicer end function.getPtrToDynamicArray_bufferify
}

Fortran calls C via the following interface:

interface
 subroutine c_get_ptr_to_dynamic_array(count, ncount) &
 bind(C, name="getPtrToDynamicArray")
 use iso_c_binding, only : C_INT, C_PTR
 implicit none
 type(C_PTR), intent(OUT) :: count
 integer(C_INT), intent(OUT) :: ncount
 end subroutine c_get_ptr_to_dynamic_array
end interface

The Fortran wrapper:

subroutine get_ptr_to_dynamic_array(count)
 use iso_c_binding, only : C_INT, c_f_pointer
 integer(C_INT), intent(OUT), pointer :: count(:)
 ! splicer begin function.get_ptr_to_dynamic_array
 type(POI_SHROUD_array) :: SHT_count_cdesc
 call c_get_ptr_to_dynamic_array_bufferify(SHT_count_cdesc)
 call c_f_pointer(SHT_count_cdesc%base_addr, count, &
 SHT_count_cdesc%shape(1:1))
 ! splicer end function.get_ptr_to_dynamic_array
end subroutine get_ptr_to_dynamic_array

Assigning to iarray will modify the C++ variable.
Example usage:

integer(C_INT), pointer :: iarray(:)
call get_ptr_to_dynamic_array(iarray)
iarray = 0

getRawPtrToInt2d

global_int2d is a two dimensional array of non-contiguous rows.
C stores the address of each row.
Shroud can only deal with this as a type(C_PTR) and expects the
user to dereference the address.

C++ library function from pointers.c:

static int global_int2d_1[] = {1,2,3};
static int global_int2d_2[] = {4,5};
static int *global_int2d[] = {global_int2d_1, global_int2d_2};

void getRawPtrToInt2d(int ***arg)
{
 *arg = (int **) global_int2d;
}

pointers.yaml:

- decl: void getRawPtrToInt2d(int ***arg +intent(out))

Fortran calls C via the following interface:

interface
 subroutine get_raw_ptr_to_int2d(arg) &
 bind(C, name="getRawPtrToInt2d")
 use iso_c_binding, only : C_PTR
 implicit none
 type(C_PTR), intent(OUT) :: arg
 end subroutine get_raw_ptr_to_int2d
end interface

Example usage:

type(C_PTR) :: addr
type(C_PTR), pointer :: array2d(:)
integer(C_INT), pointer :: row1(:), row2(:)
integer total

call get_raw_ptr_to_int2d(addr)

! Dereference the pointers into two 1d arrays.
call c_f_pointer(addr, array2d, [2])
call c_f_pointer(array2d(1), row1, [3])
call c_f_pointer(array2d(2), row2, [2])

total = row1(1) + row1(2) + row1(3) + row2(1) + row2(2)
call assert_equals(15, total)

checkInt2d

Example of using the type(C_PTR) returned
getRawPtrToInt2d.

pointers.yaml:

- decl: int checkInt2d(int **arg +intent(in))

Fortran calls C via the following interface.
Note the use of VALUE attribute.

interface
 function check_int2d(arg) &
 result(SHT_rv) &
 bind(C, name="checkInt2d")
 use iso_c_binding, only : C_INT, C_PTR
 implicit none
 type(C_PTR), intent(IN), value :: arg
 integer(C_INT) :: SHT_rv
 end function check_int2d
end interface

Example usage:

type(C_PTR) :: addr
integer total

call get_raw_ptr_to_int2d(addr)
total = check_int2d(addr)
call assert_equals(15, total)

getMinMax

No Fortran function is created. Only an interface to a C wrapper
which dereference the pointers so they can be treated as references.

C++ library function in tutorial.cpp:

void getMinMax(int &min, int &max)
{
 min = -1;
 max = 100;
}

tutorial.yaml:

- decl: void getMinMax(int &min +intent(out), int &max +intent(out))

The C wrapper:

void TUT_getMinMax(int * min, int * max)
{
 // splicer begin function.getMinMax
 tutorial::getMinMax(*min, *max);
 // splicer end function.getMinMax
}

Fortran calls C via the following interface:

interface
 subroutine get_min_max(min, max) &
 bind(C, name="TUT_getMinMax")
 use iso_c_binding, only : C_INT
 implicit none
 integer(C_INT), intent(OUT) :: min
 integer(C_INT), intent(OUT) :: max
 end subroutine get_min_max
end interface

Fortran usage:

call get_min_max(minout, maxout)
call assert_equals(-1, minout, "get_min_max minout")
call assert_equals(100, maxout, "get_min_max maxout")

returnIntPtrToScalar

pointers.yaml:

- decl: int *returnIntPtrToScalar(void)

Fortran calls C via the following interface:

interface
 function c_return_int_ptr_to_scalar() &
 result(SHT_rv) &
 bind(C, name="returnIntPtrToScalar")
 use iso_c_binding, only : C_PTR
 implicit none
 type(C_PTR) SHT_rv
 end function c_return_int_ptr_to_scalar
end interface

The Fortran wrapper:

function return_int_ptr_to_scalar() &
 result(SHT_rv)
 use iso_c_binding, only : C_INT, C_PTR, c_f_pointer
 integer(C_INT), pointer :: SHT_rv
 ! splicer begin function.return_int_ptr_to_scalar
 type(C_PTR) :: SHC_rv_ptr
 SHC_rv_ptr = c_return_int_ptr_to_scalar()
 call c_f_pointer(SHC_rv_ptr, SHT_rv)
 ! splicer end function.return_int_ptr_to_scalar
end function return_int_ptr_to_scalar

Example usage:

integer(C_INT), pointer :: irvscalar
irvscalar => return_int_ptr_to_scalar()

returnIntPtrToFixedArray

pointers.yaml:

- decl: int *returnIntPtrToFixedArray(void) +dimension(10)

This is a C file which provides the bufferify function.

wrappointers.c:

void POI_returnIntPtrToFixedArray_bufferify(
 POI_SHROUD_array *SHT_rv_cdesc)
{
 // splicer begin function.returnIntPtrToFixedArray_bufferify
 int * SHC_rv = returnIntPtrToFixedArray();
 SHT_rv_cdesc->cxx.addr = SHC_rv;
 SHT_rv_cdesc->cxx.idtor = 0;
 SHT_rv_cdesc->addr.base = SHC_rv;
 SHT_rv_cdesc->type = SH_TYPE_INT;
 SHT_rv_cdesc->elem_len = sizeof(int);
 SHT_rv_cdesc->rank = 1;
 SHT_rv_cdesc->shape[0] = 10;
 SHT_rv_cdesc->size = SHT_rv_cdesc->shape[0];
 // splicer end function.returnIntPtrToFixedArray_bufferify
}

Fortran calls C via the following interface:

interface
 subroutine c_return_int_ptr_to_fixed_array_bufferify(SHT_rv) &
 bind(C, name="POI_returnIntPtrToFixedArray_bufferify")
 import :: POI_SHROUD_array
 implicit none
 type(POI_SHROUD_array), intent(OUT) :: SHT_rv
 end subroutine c_return_int_ptr_to_fixed_array_bufferify
end interface

The Fortran wrapper:

function return_int_ptr_to_fixed_array() &
 result(SHT_rv)
 use iso_c_binding, only : C_INT, c_f_pointer
 integer(C_INT), pointer :: SHT_rv(:)
 ! splicer begin function.return_int_ptr_to_fixed_array
 type(POI_SHROUD_array) :: SHT_rv_cdesc
 call c_return_int_ptr_to_fixed_array_bufferify(SHT_rv_cdesc)
 call c_f_pointer(SHT_rv_cdesc%base_addr, SHT_rv, &
 SHT_rv_cdesc%shape(1:1))
 ! splicer end function.return_int_ptr_to_fixed_array
end function return_int_ptr_to_fixed_array

Example usage:

integer(C_INT), pointer :: irvarray(:)
irvarray => return_int_ptr_to_fixed_array()

returnIntScalar

pointers.yaml:

- decl: int *returnIntScalar(void) +deref(scalar)

This is a C file which provides the bufferify function.

wrappointers.c:

int POI_returnIntScalar(void)
{
 // splicer begin function.returnIntScalar
 int * SHC_rv = returnIntScalar();
 return *SHC_rv;
 // splicer end function.returnIntScalar
}

Fortran calls C via the following interface:

interface
 function return_int_scalar() &
 result(SHT_rv) &
 bind(C, name="POI_returnIntScalar")
 use iso_c_binding, only : C_INT
 implicit none
 integer(C_INT) :: SHT_rv
 end function return_int_scalar
end interface

Example usage:

integer :: ivalue
ivalue = return_int_scalar()

returnIntPtrDimPointer

Return a Fortran pointer to an array.
The length of the array is returned from C++ in the len argument.
This argument sets the hidden attribute since it is not needed in
the Fortran wrapper. It will be used in the c_f_pointer call to
set the length of the array.

The input is in file ownership.yaml.

- decl: int * ReturnIntPtrDimPointer(int *len+intent(out)+hidden)
 fattrs:
 deref: pointer
 dimension: len

The C wrapper calls the C++ function from an extern C wrapper.
In does not hide the len argument.
This function does not use the deref attribute.

int * OWN_ReturnIntPtrDimPointer(int * len)
{
 // splicer begin function.ReturnIntPtrDimPointer
 int * SHC_rv = ReturnIntPtrDimPointer(len);
 return SHC_rv;
 // splicer end function.ReturnIntPtrDimPointer
}

The bufferify function passes an argument to contain the meta data of the array.
It is written to wrapownership.cpp.

void OWN_ReturnIntPtrDimPointer_bufferify(
 OWN_SHROUD_array *SHT_rv_cdesc)
{
 // splicer begin function.ReturnIntPtrDimPointer_bufferify
 int len;
 int * SHC_rv = ReturnIntPtrDimPointer(&len);
 SHT_rv_cdesc->cxx.addr = SHC_rv;
 SHT_rv_cdesc->cxx.idtor = 0;
 SHT_rv_cdesc->addr.base = SHC_rv;
 SHT_rv_cdesc->type = SH_TYPE_INT;
 SHT_rv_cdesc->elem_len = sizeof(int);
 SHT_rv_cdesc->rank = 1;
 SHT_rv_cdesc->shape[0] = len;
 SHT_rv_cdesc->size = SHT_rv_cdesc->shape[0];
 // splicer end function.ReturnIntPtrDimPointer_bufferify
}

Fortran calls the bufferify function in wrapfownership.f.

function return_int_ptr_dim_pointer() &
 result(SHT_rv)
 use iso_c_binding, only : C_INT, c_f_pointer
 integer(C_INT), pointer :: SHT_rv(:)
 ! splicer begin function.return_int_ptr_dim_pointer
 type(OWN_SHROUD_array) :: SHT_rv_cdesc
 call c_return_int_ptr_dim_pointer_bufferify(SHT_rv_cdesc)
 call c_f_pointer(SHT_rv_cdesc%base_addr, SHT_rv, &
 SHT_rv_cdesc%shape(1:1))
 ! splicer end function.return_int_ptr_dim_pointer
end function return_int_ptr_dim_pointer

Fortran usage:

integer(C_INT), pointer :: ivalue(:)
integer len

ivalue => return_int_ptr_dim_pointer()
len = size(ivalue)

returnIntPtrDimAlloc

Convert a pointer returned from C++ into a Fortran allocatable array.
To do this, memory is allocated in Fortran then the C++ values are copied
into it.
The advantage is that the user does not have to worry about releasing the
C++ memory.
The length of the array is returned from C++ in the len argument.
This argument sets the hidden attribute since it is not needed in
the Fortran wrapper.

The input is in file ownership.yaml.

- decl: int * ReturnIntPtrDimAlloc(int *len+intent(out)+hidden)
 fattrs:
 deref: allocatable
 dimension: len

The C wrapper calls the C++ function from an extern C wrapper.
In does not hide the len argument.
This function does not use the deref attribute.

int * OWN_ReturnIntPtrDimAlloc(int * len)
{
 // splicer begin function.ReturnIntPtrDimAlloc
 int * SHC_rv = ReturnIntPtrDimAlloc(len);
 return SHC_rv;
 // splicer end function.ReturnIntPtrDimAlloc
}

The bufferify function passes an argument to contain the meta data of the array.
It is written to wrapownership.cpp.

void OWN_ReturnIntPtrDimAlloc_bufferify(OWN_SHROUD_array *SHT_rv_cdesc)
{
 // splicer begin function.ReturnIntPtrDimAlloc_bufferify
 int len;
 int * SHC_rv = ReturnIntPtrDimAlloc(&len);
 SHT_rv_cdesc->cxx.addr = SHC_rv;
 SHT_rv_cdesc->cxx.idtor = 0;
 SHT_rv_cdesc->addr.base = SHC_rv;
 SHT_rv_cdesc->type = SH_TYPE_INT;
 SHT_rv_cdesc->elem_len = sizeof(int);
 SHT_rv_cdesc->rank = 1;
 SHT_rv_cdesc->shape[0] = len;
 SHT_rv_cdesc->size = SHT_rv_cdesc->shape[0];
 // splicer end function.ReturnIntPtrDimAlloc_bufferify
}

Fortran calls the bufferify function in wrapfownership.f.

function return_int_ptr_dim_alloc() &
 result(SHT_rv)
 use iso_c_binding, only : C_INT, C_LOC, C_SIZE_T
 integer(C_INT), allocatable, target :: SHT_rv(:)
 ! splicer begin function.return_int_ptr_dim_alloc
 type(OWN_SHROUD_array) :: SHT_rv_cdesc
 call c_return_int_ptr_dim_alloc_bufferify(SHT_rv_cdesc)
 allocate(SHT_rv(SHT_rv_cdesc%shape(1)))
 call OWN_SHROUD_copy_array(SHT_rv_cdesc, C_LOC(SHT_rv), &
 size(SHT_rv, kind=C_SIZE_T))
 ! splicer end function.return_int_ptr_dim_alloc
end function return_int_ptr_dim_alloc

Fortran usage:

integer(C_INT), allocatable :: ivalue(:)
integer len

ivalue = return_int_ptr_dim_alloc()
len = size(ivalue)

Bool

checkBool

Assignments are done in the Fortran wrapper to convert between
logical and logical(C_BOOL).

C library function in clibrary:

void checkBool(const bool arg1, bool *arg2, bool *arg3)
{
 strncpy(last_function_called, "checkBool", MAXLAST);
 *arg2 = ! arg1;
 *arg3 = ! *arg3;
 return;
}

clibrary.yaml:

- decl: void checkBool(const bool arg1,
 bool *arg2+intent(out),
 bool *arg3+intent(inout))

Fortran calls C via the following interface:

interface
 subroutine c_check_bool(arg1, arg2, arg3) &
 bind(C, name="checkBool")
 use iso_c_binding, only : C_BOOL
 implicit none
 logical(C_BOOL), value, intent(IN) :: arg1
 logical(C_BOOL), intent(OUT) :: arg2
 logical(C_BOOL), intent(INOUT) :: arg3
 end subroutine c_check_bool
end interface

The Fortran wrapper:

subroutine check_bool(arg1, arg2, arg3)
 use iso_c_binding, only : C_BOOL
 logical, value, intent(IN) :: arg1
 logical, intent(OUT) :: arg2
 logical, intent(INOUT) :: arg3
 ! splicer begin function.check_bool
 logical(C_BOOL) :: SHT_arg1_cxx
 logical(C_BOOL) :: SHT_arg2_cxx
 logical(C_BOOL) :: SHT_arg3_cxx
 SHT_arg1_cxx = arg1 ! coerce to C_BOOL
 SHT_arg3_cxx = arg3 ! coerce to C_BOOL
 call c_check_bool(SHT_arg1_cxx, SHT_arg2_cxx, SHT_arg3_cxx)
 arg2 = SHT_arg2_cxx ! coerce to logical
 arg3 = SHT_arg3_cxx ! coerce to logical
 ! splicer end function.check_bool
end subroutine check_bool

Fortran usage:

logical rv_logical, wrk_logical
rv_logical = .true.
wrk_logical = .true.
call check_bool(.true., rv_logical, wrk_logical)
call assert_false(rv_logical)
call assert_false(wrk_logical)

Character

acceptName

Pass a NULL terminated string to a C function.
The string will be unchanged.

C library function in clibrary.c:

void acceptName(const char *name)
{
 strncpy(last_function_called, "acceptName", MAXLAST);
}

clibrary.yaml:

- decl: void acceptName(const char *name)

Fortran calls C via the following interface:

interface
 subroutine c_accept_name(name) &
 bind(C, name="acceptName")
 use iso_c_binding, only : C_CHAR
 implicit none
 character(kind=C_CHAR), intent(IN) :: name(*)
 end subroutine c_accept_name
end interface

The Fortran wrapper:

subroutine accept_name(name)
 use iso_c_binding, only : C_NULL_CHAR
 character(len=*), intent(IN) :: name
 ! splicer begin function.accept_name
 call c_accept_name(trim(name)//C_NULL_CHAR)
 ! splicer end function.accept_name
end subroutine accept_name

No C wrapper is required since the Fortran wrapper creates a NULL
terminated string by calling the Fortran intrinsic function trim
and concatenating C_NULL_CHAR (from iso_c_binding). This can
be done since the argument name is const which sets the
attribute intent(in).

Fortran usage:

call accept_name("spot")

returnOneName

Pass the pointer to a buffer which the C library will fill. The
length of the string is implicitly known by the library to not exceed
the library variable MAXNAME.

C library function in clibrary.c:

void returnOneName(char *name1)
{
 strcpy(name1, "bill");
}

clibrary.yaml:

- decl: void returnOneName(char *name1+intent(out)+charlen(MAXNAME))

The C wrapper:

void CLI_returnOneName_bufferify(char *name1, int SHT_name1_len)
{
 // splicer begin function.returnOneName_bufferify
 returnOneName(name1);
 ShroudStrBlankFill(name1, SHT_name1_len);
 // splicer end function.returnOneName_bufferify
}

Fortran calls C via the following interface:

interface
 subroutine c_return_one_name_bufferify(name1, SHT_name1_len) &
 bind(C, name="CLI_returnOneName_bufferify")
 use iso_c_binding, only : C_CHAR, C_INT
 implicit none
 character(kind=C_CHAR), intent(OUT) :: name1(*)
 integer(C_INT), value, intent(IN) :: SHT_name1_len
 end subroutine c_return_one_name_bufferify
end interface

The Fortran wrapper:

subroutine return_one_name(name1)
 use iso_c_binding, only : C_INT
 character(len=*), intent(OUT) :: name1
 ! splicer begin function.return_one_name
 integer(C_INT) SHT_name1_len
 SHT_name1_len = len(name1, kind=C_INT)
 call c_return_one_name_bufferify(name1, SHT_name1_len)
 ! splicer end function.return_one_name
end subroutine return_one_name

Fortran usage:

name1 = " "
call return_one_name(name1)
call assert_equals("bill", name1)

passCharPtr

The function passCharPtr(dest, src) is equivalent to the Fortran
statement dest = src:

C++ library function in strings.cpp:

void passCharPtr(char *dest, const char *src)
{
 std::strcpy(dest, src);
}

strings.yaml:

- decl: void passCharPtr(char * dest+intent(out)+charlen(40),
 const char *src)

The intent of dest must be explicit. It defaults to intent(inout)
since it is a pointer.
src is implied to be intent(in) since it is const.
This single line will create five different wrappers.

The native C version.
The only feature this provides to Fortran is the ability
to call a C++ function by wrapping it in an extern "C" function.
The user is responsible for providing the NULL termination.
The result in str will also be NULL terminated instead of
blank filled.:

void STR_passCharPtr(char * dest, const char * src)
{
 // splicer begin function.passCharPtr
 passCharPtr(dest, src);
 // splicer end function.passCharPtr
}

The C wrapper:

void STR_passCharPtr_bufferify(char *dest, int SHT_dest_len,
 const char * src)
{
 // splicer begin function.passCharPtr_bufferify
 passCharPtr(dest, src);
 ShroudStrBlankFill(dest, SHT_dest_len);
 // splicer end function.passCharPtr_bufferify
}

Fortran calls C via the following interface:

interface
 subroutine c_pass_char_ptr(dest, src) &
 bind(C, name="STR_passCharPtr")
 use iso_c_binding, only : C_CHAR
 implicit none
 character(kind=C_CHAR), intent(OUT) :: dest(*)
 character(kind=C_CHAR), intent(IN) :: src(*)
 end subroutine c_pass_char_ptr
end interface

interface
 subroutine c_pass_char_ptr_bufferify(dest, SHT_dest_len, src) &
 bind(C, name="STR_passCharPtr_bufferify")
 use iso_c_binding, only : C_CHAR, C_INT
 implicit none
 character(kind=C_CHAR), intent(OUT) :: dest(*)
 integer(C_INT), value, intent(IN) :: SHT_dest_len
 character(kind=C_CHAR), intent(IN) :: src(*)
 end subroutine c_pass_char_ptr_bufferify
end interface

The Fortran wrapper:

subroutine pass_char_ptr(dest, src)
 use iso_c_binding, only : C_INT, C_NULL_CHAR
 character(len=*), intent(OUT) :: dest
 character(len=*), intent(IN) :: src
 ! splicer begin function.pass_char_ptr
 integer(C_INT) SHT_dest_len
 SHT_dest_len = len(dest, kind=C_INT)
 call c_pass_char_ptr_bufferify(dest, SHT_dest_len, &
 trim(src)//C_NULL_CHAR)
 ! splicer end function.pass_char_ptr
end subroutine pass_char_ptr

The function can be called without the user aware that it is written in C++:

character(30) str
call pass_char_ptr(dest=str, src="mouse")

ImpliedTextLen

Pass the pointer to a buffer which the C library will fill. The
length of the buffer is passed in ltext. Since Fortran knows the
length of CHARACTER variable, the Fortran wrapper does not need to
be explicitly told the length of the variable. Instead its value can
be defined with the implied attribute.

This can be used to emulate the behavior of most Fortran compilers
which will pass an additional, hidden argument which contains the
length of a CHARACTER argument.

C library function in clibrary.c:

void ImpliedTextLen(char *text, int ltext)
{
 strncpy(text, "ImpliedTextLen", ltext);
 strncpy(last_function_called, "ImpliedTextLen", MAXLAST);
}

clibrary.yaml:

- decl: void ImpliedTextLen(char *text+intent(out)+charlen(MAXNAME),
 int ltext+implied(len(text)))

The C wrapper:

void CLI_ImpliedTextLen_bufferify(char *text, int SHT_text_len,
 int ltext)
{
 // splicer begin function.ImpliedTextLen_bufferify
 ImpliedTextLen(text, ltext);
 ShroudStrBlankFill(text, SHT_text_len);
 // splicer end function.ImpliedTextLen_bufferify
}

Fortran calls C via the following interface:

interface
 subroutine c_implied_text_len_bufferify(text, SHT_text_len, &
 ltext) &
 bind(C, name="CLI_ImpliedTextLen_bufferify")
 use iso_c_binding, only : C_CHAR, C_INT
 implicit none
 character(kind=C_CHAR), intent(OUT) :: text(*)
 integer(C_INT), value, intent(IN) :: SHT_text_len
 integer(C_INT), value, intent(IN) :: ltext
 end subroutine c_implied_text_len_bufferify
end interface

The Fortran wrapper:

subroutine implied_text_len(text)
 use iso_c_binding, only : C_INT
 character(len=*), intent(OUT) :: text
 integer(C_INT) :: SH_ltext
 ! splicer begin function.implied_text_len
 integer(C_INT) SHT_text_len
 SHT_text_len = len(text, kind=C_INT)
 SH_ltext = len(text,kind=C_INT)
 call c_implied_text_len_bufferify(text, SHT_text_len, SH_ltext)
 ! splicer end function.implied_text_len
end subroutine implied_text_len

Fortran usage:

character(MAXNAME) name1
call implied_text_len(name1)
call assert_equals("ImpliedTextLen", name1)

acceptCharArrayIn

Arguments of type char ** are assumed to be a list of NULL
terminated strings. In Fortran this pattern would be an array of
CHARACTER where all strings are the same length. The Fortran
variable is converted into the the C version by copying the data then
releasing it at the end of the wrapper.

pointers.yaml:

- decl: void acceptCharArrayIn(char **names +intent(in))

This is a C file which provides the bufferify function.

wrappointers.c:

int POI_acceptCharArrayIn_bufferify(const char *names,
 size_t SHT_names_size, int SHT_names_len)
{
 // splicer begin function.acceptCharArrayIn_bufferify
 char **SHCXX_names = ShroudStrArrayAlloc(names, SHT_names_size,
 SHT_names_len);
 int SHC_rv = acceptCharArrayIn(SHCXX_names);
 ShroudStrArrayFree(SHCXX_names, SHT_names_size);
 return SHC_rv;
 // splicer end function.acceptCharArrayIn_bufferify
}

Most of the work is done by the helper function.
This converts the Fortran array into NULL terminated strings by
copying all of the values:

// helper ShroudStrArrayAlloc
// Copy src into new memory and null terminate.
static char **ShroudStrArrayAlloc(const char *src, int nsrc, int len)
{
 char **rv = malloc(sizeof(char *) * nsrc);
 const char *src0 = src;
 for(int i=0; i < nsrc; ++i) {
 int ntrim = ShroudLenTrim(src0, len);
 char *tgt = malloc(ntrim+1);
 memcpy(tgt, src0, ntrim);
 tgt[ntrim] = '\0';
 rv[i] = tgt;
 src0 += len;
 }
 return rv;
}

Fortran calls C via the following interface:

interface
 function c_accept_char_array_in(names) &
 result(SHT_rv) &
 bind(C, name="acceptCharArrayIn")
 use iso_c_binding, only : C_INT, C_PTR
 implicit none
 type(C_PTR), intent(IN) :: names(*)
 integer(C_INT) :: SHT_rv
 end function c_accept_char_array_in
end interface

The Fortran wrapper:

function accept_char_array_in(names) &
 result(SHT_rv)
 use iso_c_binding, only : C_INT, C_SIZE_T
 character(len=*), intent(IN) :: names(:)
 integer(C_INT) :: SHT_rv
 ! splicer begin function.accept_char_array_in
 SHT_rv = c_accept_char_array_in_bufferify(names, &
 size(names, kind=C_SIZE_T), len(names, kind=C_INT))
 ! splicer end function.accept_char_array_in
end function accept_char_array_in

Example usage:

character(10) :: in(3) = [&
 "dog ", &
 "cat ", &
 "monkey " &
]
call accept_char_array_in(in)

std::string

acceptStringReference

C++ library function in strings.c:

void acceptStringReference(std::string & arg1)
{
 arg1.append("dog");
}

strings.yaml:

- decl: void acceptStringReference(std::string & arg1)

A reference defaults to intent(inout) and will add both the len
and len_trim annotations.

Both generated functions will convert arg into a std::string,
call the function, then copy the results back into the argument.

Which will call the C wrapper:

void STR_acceptStringReference(char * arg1)
{
 // splicer begin function.acceptStringReference
 std::string SHCXX_arg1(arg1);
 acceptStringReference(SHCXX_arg1);
 strcpy(arg1, SHCXX_arg1.c_str());
 // splicer end function.acceptStringReference
}

The C wrapper:

void STR_acceptStringReference_bufferify(char *arg1, int SHT_arg1_len)
{
 // splicer begin function.acceptStringReference_bufferify
 std::string SHCXX_arg1(arg1, ShroudLenTrim(arg1, SHT_arg1_len));
 acceptStringReference(SHCXX_arg1);
 ShroudStrCopy(arg1, SHT_arg1_len, SHCXX_arg1.data(),
 SHCXX_arg1.size());
 // splicer end function.acceptStringReference_bufferify
}

An interface for the native C function is also created:

interface
 subroutine c_accept_string_reference(arg1) &
 bind(C, name="STR_acceptStringReference")
 use iso_c_binding, only : C_CHAR
 implicit none
 character(kind=C_CHAR), intent(INOUT) :: arg1(*)
 end subroutine c_accept_string_reference
end interface

Fortran calls C via the following interface:

interface
 subroutine c_accept_string_reference_bufferify(arg1, &
 SHT_arg1_len) &
 bind(C, name="STR_acceptStringReference_bufferify")
 use iso_c_binding, only : C_CHAR, C_INT
 implicit none
 character(kind=C_CHAR), intent(INOUT) :: arg1(*)
 integer(C_INT), value, intent(IN) :: SHT_arg1_len
 end subroutine c_accept_string_reference_bufferify
end interface

The Fortran wrapper:

subroutine accept_string_reference(arg1)
 use iso_c_binding, only : C_INT
 character(len=*), intent(INOUT) :: arg1
 ! splicer begin function.accept_string_reference
 integer(C_INT) SHT_arg1_len
 SHT_arg1_len = len(arg1, kind=C_INT)
 call c_accept_string_reference_bufferify(arg1, SHT_arg1_len)
 ! splicer end function.accept_string_reference
end subroutine accept_string_reference

The important thing to notice is that the pure C version could do very
bad things since it does not know how much space it has to copy into.
The bufferify version knows the allocated length of the argument.
However, since the input argument is a fixed length it may be too
short for the new string value:

Fortran usage:

character(30) str
str = "cat"
call accept_string_reference(str)
call assert_true(str == "catdog")

char functions

getCharPtr1

Return a pointer and convert into an ALLOCATABLE CHARACTER
variable. The Fortran application is responsible to release the
memory. However, this may be done automatically by the Fortran
runtime.

C++ library function in strings.cpp:

const char * getCharPtr1()
{
 return static_char;
}

strings.yaml:

- decl: const char * getCharPtr1()

The C wrapper copies all of the metadata into a SHROUD_array
struct which is used by the Fortran wrapper:

void STR_getCharPtr1_bufferify(STR_SHROUD_array *SHT_rv_cdesc)
{
 // splicer begin function.getCharPtr1_bufferify
 const char * SHC_rv = getCharPtr1();
 SHT_rv_cdesc->cxx.addr = const_cast<char *>(SHC_rv);
 SHT_rv_cdesc->cxx.idtor = 0;
 SHT_rv_cdesc->addr.ccharp = SHC_rv;
 SHT_rv_cdesc->type = SH_TYPE_OTHER;
 SHT_rv_cdesc->elem_len = SHC_rv == nullptr ? 0 : std::strlen(SHC_rv);
 SHT_rv_cdesc->size = 1;
 SHT_rv_cdesc->rank = 0;
 // splicer end function.getCharPtr1_bufferify
}

Fortran calls C via the following interface:

interface
 subroutine c_get_char_ptr1_bufferify(SHT_rv) &
 bind(C, name="STR_getCharPtr1_bufferify")
 import :: STR_SHROUD_array
 implicit none
 type(STR_SHROUD_array), intent(OUT) :: SHT_rv
 end subroutine c_get_char_ptr1_bufferify
end interface

The Fortran wrapper uses the metadata in DSHF_rv to allocate
a CHARACTER variable of the correct length.
The helper function SHROUD_copy_string_and_free will copy
the results of the C++ function into the return variable:

function get_char_ptr1() &
 result(SHT_rv)
 character(len=:), allocatable :: SHT_rv
 ! splicer begin function.get_char_ptr1
 type(STR_SHROUD_array) :: SHT_rv_cdesc
 call c_get_char_ptr1_bufferify(SHT_rv_cdesc)
 allocate(character(len=SHT_rv_cdesc%elem_len):: SHT_rv)
 call STR_SHROUD_copy_string_and_free(SHT_rv_cdesc, SHT_rv, &
 SHT_rv_cdesc%elem_len)
 ! splicer end function.get_char_ptr1
end function get_char_ptr1

Fortran usage:

character(len=:), allocatable :: str
str = get_char_ptr1()

getCharPtr2

If you know the maximum size of string that you expect the function to
return, then the len attribute is used to declare the length. The
explicit ALLOCATE is avoided but any result which is longer than
the length will be silently truncated.

C++ library function in strings.cpp:

const char * getCharPtr2()
{
 return static_char;
}

strings.yaml:

- decl: const char * getCharPtr2() +len(30)

The C wrapper:

void STR_getCharPtr2_bufferify(char *SHC_rv, int SHT_rv_len)
{
 // splicer begin function.getCharPtr2_bufferify
 const char * SHCXX_rv = getCharPtr2();
 ShroudStrCopy(SHC_rv, SHT_rv_len, SHCXX_rv, -1);
 // splicer end function.getCharPtr2_bufferify
}

Fortran calls C via the following interface:

interface
 subroutine c_get_char_ptr2_bufferify(SHT_rv, SHT_rv_len) &
 bind(C, name="STR_getCharPtr2_bufferify")
 use iso_c_binding, only : C_CHAR, C_INT
 implicit none
 character(kind=C_CHAR), intent(OUT) :: SHT_rv(*)
 integer(C_INT), value, intent(IN) :: SHT_rv_len
 end subroutine c_get_char_ptr2_bufferify
end interface

The Fortran wrapper:

function get_char_ptr2() &
 result(SHT_rv)
 use iso_c_binding, only : C_INT
 character(len=30) :: SHT_rv
 ! splicer begin function.get_char_ptr2
 integer(C_INT) SHT_rv_len
 SHT_rv_len = len(SHT_rv, kind=C_INT)
 call c_get_char_ptr2_bufferify(SHT_rv, SHT_rv_len)
 ! splicer end function.get_char_ptr2
end function get_char_ptr2

Fortran usage:

character(30) str
str = get_char_ptr2()

getCharPtr3

Create a Fortran subroutine with an additional CHARACTER
argument for the C function result. Any size character string can
be returned limited by the size of the Fortran argument. The
argument is defined by the F_string_result_as_arg format string.

C++ library function in strings.cpp:

const char * getCharPtr3()
{
 return static_char;
}

strings.yaml:

- decl: const char * getCharPtr3()
 format:
 F_string_result_as_arg: output

The C wrapper:

void STR_getCharPtr3_bufferify(char *output, int noutput)
{
 // splicer begin function.getCharPtr3_bufferify
 const char * SHC_rv = getCharPtr3();
 ShroudStrCopy(output, noutput, SHC_rv, -1);
 // splicer end function.getCharPtr3_bufferify
}

Fortran calls C via the following interface:

interface
 subroutine c_get_char_ptr3_bufferify(output, noutput) &
 bind(C, name="STR_getCharPtr3_bufferify")
 use iso_c_binding, only : C_CHAR, C_INT
 implicit none
 character(kind=C_CHAR), intent(OUT) :: output(*)
 integer(C_INT), value, intent(IN) :: noutput
 end subroutine c_get_char_ptr3_bufferify
end interface

The Fortran wrapper:

subroutine get_char_ptr3(output)
 character(*), intent(OUT) :: output
 ! splicer begin function.get_char_ptr3
 integer(C_INT) SHT_rv_len
 SHT_rv_len = len(output, kind=C_INT)
 call c_get_char_ptr3_bufferify(output, SHT_rv_len)
 ! splicer end function.get_char_ptr3
end subroutine get_char_ptr3

Fortran usage:

character(30) str
call get_char_ptrs(str)

string functions

getConstStringRefPure

C++ library function in strings.cpp:

const std::string& getConstStringRefPure()
{
 return static_str;
}

strings.yaml:

- decl: const string& getConstStringRefPure()

The C wrapper:

void STR_getConstStringRefPure_bufferify(STR_SHROUD_array *SHT_rv_cdesc)
{
 // splicer begin function.getConstStringRefPure_bufferify
 const std::string & SHCXX_rv = getConstStringRefPure();
 ShroudStrToArray(SHT_rv_cdesc, &SHCXX_rv, 0);
 // splicer end function.getConstStringRefPure_bufferify
}

The native C wrapper:

const char * STR_getConstStringRefPure(void)
{
 // splicer begin function.getConstStringRefPure
 const std::string & SHCXX_rv = getConstStringRefPure();
 const char * SHC_rv = SHCXX_rv.c_str();
 return SHC_rv;
 // splicer end function.getConstStringRefPure
}

Fortran calls C via the following interface:

interface
 subroutine c_get_const_string_ref_pure_bufferify(SHT_rv) &
 bind(C, name="STR_getConstStringRefPure_bufferify")
 import :: STR_SHROUD_array
 implicit none
 type(STR_SHROUD_array), intent(OUT) :: SHT_rv
 end subroutine c_get_const_string_ref_pure_bufferify
end interface

The Fortran wrapper:

function get_const_string_ref_pure() &
 result(SHT_rv)
 character(len=:), allocatable :: SHT_rv
 ! splicer begin function.get_const_string_ref_pure
 type(STR_SHROUD_array) :: SHT_rv_cdesc
 call c_get_const_string_ref_pure_bufferify(SHT_rv_cdesc)
 allocate(character(len=SHT_rv_cdesc%elem_len):: SHT_rv)
 call STR_SHROUD_copy_string_and_free(SHT_rv_cdesc, SHT_rv, &
 SHT_rv_cdesc%elem_len)
 ! splicer end function.get_const_string_ref_pure
end function get_const_string_ref_pure

Fortran usage:

str = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
str = get_const_string_ref_pure()
call assert_true(str == static_str, "getConstStringRefPure")

std::vector

vector_sum

C++ library function in vectors.cpp:

int vector_sum(const std::vector<int> &arg)
{
 int sum = 0;
 for(std::vector<int>::const_iterator it = arg.begin(); it != arg.end(); ++it) {
 sum += *it;
 }
 return sum;
}

vectors.yaml:

- decl: int vector_sum(const std::vector<int> &arg)

intent(in) is implied for the vector_sum argument since it is
const. The Fortran wrapper passes the array and the size to C.

The C wrapper:

int VEC_vector_sum_bufferify(int *arg, size_t SHT_arg_size)
{
 // splicer begin function.vector_sum_bufferify
 const std::vector<int> SHCXX_arg(arg, arg + SHT_arg_size);
 int SHC_rv = vector_sum(SHCXX_arg);
 return SHC_rv;
 // splicer end function.vector_sum_bufferify
}

Fortran calls C via the following interface:

interface
 function c_vector_sum_bufferify(arg, SHT_arg_size) &
 result(SHT_rv) &
 bind(C, name="VEC_vector_sum_bufferify")
 use iso_c_binding, only : C_INT, C_SIZE_T
 implicit none
 integer(C_INT), intent(IN) :: arg(*)
 integer(C_SIZE_T), intent(IN), value :: SHT_arg_size
 integer(C_INT) :: SHT_rv
 end function c_vector_sum_bufferify
end interface

The Fortran wrapper:

function vector_sum(arg) &
 result(SHT_rv)
 use iso_c_binding, only : C_INT, C_SIZE_T
 integer(C_INT), intent(IN) :: arg(:)
 integer(C_INT) :: SHT_rv
 ! splicer begin function.vector_sum
 SHT_rv = c_vector_sum_bufferify(arg, size(arg, kind=C_SIZE_T))
 ! splicer end function.vector_sum
end function vector_sum

Fortran usage:

integer(C_INT) intv(5)
intv = [1,2,3,4,5]
irv = vector_sum(intv)
call assert_true(irv .eq. 15)

vector_iota_out

C++ library function in vectors.cpp accepts an empty vector
then fills in some values.
In this example, a Fortran array is passed in and will be filled.

void vector_iota_out(std::vector<int> &arg)
{
 for(unsigned int i=0; i < 5; i++) {
 arg.push_back(i + 1);
 }
 return;
}

vectors.yaml:

- decl: void vector_iota_out(std::vector<int> &arg+intent(out))

The C wrapper allocates a new std::vector instance which will be
returned to the Fortran wrapper.
Variable Darg will be filled with the meta data for the std::vector
in a form that allows Fortran to access it.
The value of Darg->cxx.idtor is computed by Shroud and used
to release the memory (index of destructor).

void VEC_vector_iota_out_bufferify(VEC_SHROUD_array *SHT_arg_cdesc)
{
 // splicer begin function.vector_iota_out_bufferify
 std::vector<int> *SHCXX_arg = new std::vector<int>;
 vector_iota_out(*SHCXX_arg);
 SHT_arg_cdesc->cxx.addr = SHCXX_arg;
 SHT_arg_cdesc->cxx.idtor = 1;
 SHT_arg_cdesc->addr.base = SHCXX_arg->empty() ? nullptr : &SHCXX_arg->front();
 SHT_arg_cdesc->type = SH_TYPE_INT;
 SHT_arg_cdesc->elem_len = sizeof(int);
 SHT_arg_cdesc->size = SHCXX_arg->size();
 SHT_arg_cdesc->rank = 1;
 SHT_arg_cdesc->shape[0] = SHT_arg_cdesc->size;
 // splicer end function.vector_iota_out_bufferify
}

Fortran calls C via the following interface:

interface
 subroutine c_vector_iota_out_bufferify(SHT_arg_cdesc) &
 bind(C, name="VEC_vector_iota_out_bufferify")
 import :: VEC_SHROUD_array
 implicit none
 type(VEC_SHROUD_array), intent(OUT) :: SHT_arg_cdesc
 end subroutine c_vector_iota_out_bufferify
end interface

The Fortran wrapper passes a SHROUD_array instance which will be
filled by the C wrapper.

subroutine vector_iota_out(arg)
 use iso_c_binding, only : C_INT, C_LOC, C_SIZE_T
 integer(C_INT), intent(OUT), target :: arg(:)
 ! splicer begin function.vector_iota_out
 type(VEC_SHROUD_array) :: SHT_arg_cdesc
 call c_vector_iota_out_bufferify(SHT_arg_cdesc)
 call VEC_SHROUD_copy_array(SHT_arg_cdesc, C_LOC(arg), &
 size(arg,kind=C_SIZE_T))
 ! splicer end function.vector_iota_out
end subroutine vector_iota_out

Function SHROUD_copy_array_int copies the values
into the user’s argument.
If the argument is too short, not all values returned by
the library function will be copied.

// helper copy_array
// Copy std::vector into array c_var(c_var_size).
// Then release std::vector.
// Called from Fortran.
void VEC_ShroudCopyArray(VEC_SHROUD_array *data, void *c_var,
 size_t c_var_size)
{
 const void *cxx_var = data->addr.base;
 int n = c_var_size < data->size ? c_var_size : data->size;
 n *= data->elem_len;
 std::memcpy(c_var, cxx_var, n);
 VEC_SHROUD_memory_destructor(&data->cxx); // delete data->cxx.addr
}

Finally, the std::vector is released based on the value of idtor:

// Release library allocated memory.
void VEC_SHROUD_memory_destructor(VEC_SHROUD_capsule_data *cap)
{
 void *ptr = cap->addr;
 switch (cap->idtor) {
 case 0: // --none--
 {
 // Nothing to delete
 break;
 }
 case 1: // std_vector_int
 {
 std::vector<int> *cxx_ptr =
 reinterpret_cast<std::vector<int> *>(ptr);
 delete cxx_ptr;
 break;
 }
 case 2: // std_vector_double
 {
 std::vector<double> *cxx_ptr =
 reinterpret_cast<std::vector<double> *>(ptr);
 delete cxx_ptr;
 break;
 }
 default:
 {
 // Unexpected case in destructor
 break;
 }
 }
 cap->addr = nullptr;
 cap->idtor = 0; // avoid deleting again
}

Fortran usage:

integer(C_INT) intv(5)
intv(:) = 0
call vector_iota_out(intv)
call assert_true(all(intv(:) .eq. [1,2,3,4,5]))

vector_iota_out_alloc

C++ library function in vectors.cpp accepts an empty vector
then fills in some values.
In this example, the Fortran argument is ALLOCATABLE and will
be sized based on the output of the library function.

void vector_iota_out_alloc(std::vector<int> &arg)
{
 for(unsigned int i=0; i < 5; i++) {
 arg.push_back(i + 1);
 }
 return;
}

The attribute +deref(allocatable) will cause the argument to be an
ALLOCATABLE array.

vectors.yaml:

- decl: void vector_iota_out_alloc(std::vector<int> &arg+intent(out)+deref(allocatable))

The C wrapper:

void VEC_vector_iota_out_alloc_bufferify(
 VEC_SHROUD_array *SHT_arg_cdesc)
{
 // splicer begin function.vector_iota_out_alloc_bufferify
 std::vector<int> *SHCXX_arg = new std::vector<int>;
 vector_iota_out_alloc(*SHCXX_arg);
 SHT_arg_cdesc->cxx.addr = SHCXX_arg;
 SHT_arg_cdesc->cxx.idtor = 1;
 SHT_arg_cdesc->addr.base = SHCXX_arg->empty() ? nullptr : &SHCXX_arg->front();
 SHT_arg_cdesc->type = SH_TYPE_INT;
 SHT_arg_cdesc->elem_len = sizeof(int);
 SHT_arg_cdesc->size = SHCXX_arg->size();
 SHT_arg_cdesc->rank = 1;
 SHT_arg_cdesc->shape[0] = SHT_arg_cdesc->size;
 // splicer end function.vector_iota_out_alloc_bufferify
}

Fortran calls C via the following interface:

interface
 subroutine c_vector_iota_out_alloc_bufferify(SHT_arg_cdesc) &
 bind(C, name="VEC_vector_iota_out_alloc_bufferify")
 import :: VEC_SHROUD_array
 implicit none
 type(VEC_SHROUD_array), intent(OUT) :: SHT_arg_cdesc
 end subroutine c_vector_iota_out_alloc_bufferify
end interface

The Fortran wrapper passes a SHROUD_array instance which will be
filled by the C wrapper.
After the function returns, the allocate statement allocates an
array of the proper length.

subroutine vector_iota_out_alloc(arg)
 use iso_c_binding, only : C_INT, C_LOC, C_SIZE_T
 integer(C_INT), intent(OUT), allocatable, target :: arg(:)
 ! splicer begin function.vector_iota_out_alloc
 type(VEC_SHROUD_array) :: SHT_arg_cdesc
 call c_vector_iota_out_alloc_bufferify(SHT_arg_cdesc)
 allocate(arg(SHT_arg_cdesc%size))
 call VEC_SHROUD_copy_array(SHT_arg_cdesc, C_LOC(arg), &
 size(arg,kind=C_SIZE_T))
 ! splicer end function.vector_iota_out_alloc
end subroutine vector_iota_out_alloc

inta is intent(out), so it will be deallocated upon entry to vector_iota_out_alloc.

Fortran usage:

integer(C_INT), allocatable :: inta(:)
call vector_iota_out_alloc(inta)
call assert_true(allocated(inta))
call assert_equals(5 , size(inta))
call assert_true(all(inta == [1,2,3,4,5]), &
 "vector_iota_out_alloc value")

vector_iota_inout_alloc

C++ library function in vectors.cpp:

void vector_iota_inout_alloc(std::vector<int> &arg)
{
 for(unsigned int i=0; i < 5; i++) {
 arg.push_back(i + 11);
 }
 return;
}

vectors.yaml:

- decl: void vector_iota_out_alloc(std::vector<int> &arg+intent(inout)+deref(allocatable))

The C wrapper creates a new std::vector and initializes it to the
Fortran argument.

void VEC_vector_iota_inout_alloc_bufferify(int *arg,
 size_t SHT_arg_size, VEC_SHROUD_array *SHT_arg_cdesc)
{
 // splicer begin function.vector_iota_inout_alloc_bufferify
 std::vector<int> *SHCXX_arg = new std::vector<int>(
 arg, arg + SHT_arg_size);
 vector_iota_inout_alloc(*SHCXX_arg);
 SHT_arg_cdesc->cxx.addr = SHCXX_arg;
 SHT_arg_cdesc->cxx.idtor = 1;
 SHT_arg_cdesc->addr.base = SHCXX_arg->empty() ? nullptr : &SHCXX_arg->front();
 SHT_arg_cdesc->type = SH_TYPE_INT;
 SHT_arg_cdesc->elem_len = sizeof(int);
 SHT_arg_cdesc->size = SHCXX_arg->size();
 SHT_arg_cdesc->rank = 1;
 SHT_arg_cdesc->shape[0] = SHT_arg_cdesc->size;
 // splicer end function.vector_iota_inout_alloc_bufferify
}

Fortran calls C via the following interface:

interface
 subroutine c_vector_iota_inout_alloc_bufferify(arg, &
 SHT_arg_size, SHT_arg_cdesc) &
 bind(C, name="VEC_vector_iota_inout_alloc_bufferify")
 use iso_c_binding, only : C_INT, C_SIZE_T
 import :: VEC_SHROUD_array
 implicit none
 integer(C_INT), intent(IN) :: arg(*)
 integer(C_SIZE_T), intent(IN), value :: SHT_arg_size
 type(VEC_SHROUD_array), intent(OUT) :: SHT_arg_cdesc
 end subroutine c_vector_iota_inout_alloc_bufferify
end interface

The Fortran wrapper will deallocate the argument after returning
since it is intent(inout). The in values are now stored in
the std::vector. A new array is allocated to the current size
of the std::vector. Fortran has no reallocate statement.
Finally, the new values are copied into the Fortran array and
the std::vector is released.

subroutine vector_iota_inout_alloc(arg)
 use iso_c_binding, only : C_INT, C_LOC, C_SIZE_T
 integer(C_INT), intent(INOUT), allocatable, target :: arg(:)
 ! splicer begin function.vector_iota_inout_alloc
 type(VEC_SHROUD_array) :: SHT_arg_cdesc
 call c_vector_iota_inout_alloc_bufferify(arg, &
 size(arg, kind=C_SIZE_T), SHT_arg_cdesc)
 if (allocated(arg)) deallocate(arg)
 allocate(arg(SHT_arg_cdesc%size))
 call VEC_SHROUD_copy_array(SHT_arg_cdesc, C_LOC(arg), &
 size(arg,kind=C_SIZE_T))
 ! splicer end function.vector_iota_inout_alloc
end subroutine vector_iota_inout_alloc

inta is intent(inout), so it will NOT be deallocated upon
entry to vector_iota_inout_alloc.
Fortran usage:

call vector_iota_inout_alloc(inta)
call assert_true(allocated(inta))
call assert_equals(10 , size(inta))
call assert_true(all(inta == [1,2,3,4,5,11,12,13,14,15]), &
 "vector_iota_inout_alloc value")
deallocate(inta)

Void Pointers

passAssumedType

C library function in clibrary.c:

int passAssumedType(void *arg)
{
 strncpy(last_function_called, "passAssumedType", MAXLAST);
 return *(int *) arg;
}

clibrary.yaml:

- decl: int passAssumedType(void *arg+assumedtype)

Fortran calls C via the following interface:

interface
 function pass_assumed_type(arg) &
 result(SHT_rv) &
 bind(C, name="passAssumedType")
 use iso_c_binding, only : C_INT
 implicit none
 type(*) :: arg
 integer(C_INT) :: SHT_rv
 end function pass_assumed_type
end interface

Fortran usage:

use iso_c_binding, only : C_INT
integer(C_INT) rv_int
rv_int = pass_assumed_type(23_C_INT)

As a reminder, 23_C_INT creates an integer(C_INT) constant.

Note

Assumed-type was introduced in Fortran 2018.

 Numpy Struct Descriptor

Numpy Struct Descriptor

struct.yaml:

- decl: struct Cstruct1 {
 int ifield;
 double dfield;
 };

// Create PyArray_Descr for Cstruct1
static PyArray_Descr *PY_Cstruct1_create_array_descr(void)
{
 int ierr;
 PyObject *obj = NULL;
 PyObject * lnames = NULL;
 PyObject * ldescr = NULL;
 PyObject * dict = NULL;
 PyArray_Descr *dtype = NULL;

 lnames = PyList_New(2);
 if (lnames == NULL) goto fail;
 ldescr = PyList_New(2);
 if (ldescr == NULL) goto fail;

 // ifield
 obj = PyString_FromString("ifield");
 if (obj == NULL) goto fail;
 PyList_SET_ITEM(lnames, 0, obj);
 obj = (PyObject *) PyArray_DescrFromType(NPY_INT);
 if (obj == NULL) goto fail;
 PyList_SET_ITEM(ldescr, 0, obj);

 // dfield
 obj = PyString_FromString("dfield");
 if (obj == NULL) goto fail;
 PyList_SET_ITEM(lnames, 1, obj);
 obj = (PyObject *) PyArray_DescrFromType(NPY_DOUBLE);
 if (obj == NULL) goto fail;
 PyList_SET_ITEM(ldescr, 1, obj);
 obj = NULL;

 dict = PyDict_New();
 if (dict == NULL) goto fail;
 ierr = PyDict_SetItemString(dict, "names", lnames);
 if (ierr == -1) goto fail;
 lnames = NULL;
 ierr = PyDict_SetItemString(dict, "formats", ldescr);
 if (ierr == -1) goto fail;
 ldescr = NULL;
 ierr = PyArray_DescrAlignConverter(dict, &dtype);
 if (ierr == 0) goto fail;
 return dtype;
fail:
 Py_XDECREF(obj);
 if (lnames != NULL) {
 for (int i=0; i < 2; i++) {
 Py_XDECREF(PyList_GET_ITEM(lnames, i));
 }
 Py_DECREF(lnames);
 }
 if (ldescr != NULL) {
 for (int i=0; i < 2; i++) {
 Py_XDECREF(PyList_GET_ITEM(ldescr, i));
 }
 Py_DECREF(ldescr);
 }
 Py_XDECREF(dict);
 Py_XDECREF(dtype);
 return NULL;
}

 Glossary

Glossary

bufferify

The process of creating a buffer.
The C wrapper may create an additional function for each wrapped function.
This function has additional arguments needed for the Fortran interface
to pass the metadata of the argument such as the size.

C wrapper

The wrapper with a C API.
When wrapping C++, the C wrapper will be C++ code but functions will use
extern "C" block to allow them to be called from C and Fortran using
the bind(C) keyword.

capsule

Holds a pointer to a C++ class instance and some
memory management flags.
The name was inspired by the Python PyCapsule type.

Fortran wrapper

Fortran functions which call the C wrapper functions.

library

A collection of C++ declarations wrapped at the same time.
This creates a Fortran or Python module.

native type

Integer or real of any size.

shadow class

A Fortran derived type which contains a capsule and type-bound
functions to provide a Fortran object-oriented interface similar to
a C++ class.
Similar to a PyObject struct in Python.

splicer

A block of code which implements the wrapper. It is generated by
Shroud but can be replaced with a user provided implementation. A
splicer also provides a place to insert code into a generated file
a well defined places. This allows user provided code to be
preserved when regenerating wrappers.

 Index

Index

 Classes

Classes

Each class is wrapped in a Fortran derived type which holds a
type(C_PTR) pointer to an C++ instance of the class. Class
methods are wrapped using Fortran’s type-bound procedures. This makes
Fortran usage very similar to C++.

Now we’ll add a simple class to the library:

class Class1
{
public:
 void Method1() {};
};

To wrap the class add the lines to the YAML file:

declarations:
- class: Class1
 declarations:
 - decl: Class1 new() +name(new)
 format:
 function_suffix: _default
 - decl: ~Class1() +name(delete)
 - decl: void Method1()

The method new has the attribute +constructor to mark it as a
constructor. In this example the empty paren expression is required
to apply the annotation to the function instead of the result.
Likewise, delete is marked as a destructor. These annotations
will create wrappers over the new and delete keywords.

The file wrapClass1.h will have an opaque struct for the class.
This is to allows some measure of type safety over using void
pointers for every instance:

struct s_TUT_class1 {
 void *addr; /* address of C++ memory */
 int idtor; /* index of destructor */
};
typedef struct s_TUT_class1 TUT_class1;

TUT_class1 TUT_class1_new_default()
{
 tutorial::Class1 *SHCXX_rv = new tutorial::Class1();
 TUT_class1 SHC_rv = { static_cast<void *>(SHCXX_rv), 0 };
 return SHC_rv;
}

void TUT_class1_method1(TUT_class1 * self)
{
 tutorial::Class1 *SH_this = static_cast<tutorial::Class1 *>(self->addr);
 int SHC_rv = SH_this->Method1();
 return SHC_rv;
}

For Fortran a derived type is created:

type class1
 type(SHROUD_capsule_data), private :: cxxmem
contains
 procedure :: method1 => class1_method1
end type class1

And the subroutines:

function class1_new_default() &
 result(SHT_rv)
 type(class1) :: SHT_rv
 SHT_rv%cxxmem = c_class1_new_default()
end function class1_new

function class1_method1(obj) &
 result(SHT_rv)
 use iso_c_binding, only : C_INT
 class(class1) :: obj
 integer(C_INT) :: SHT_rv
 SHT_rv = c_class1_method1(obj%cxxmem)
end function class1_method1

The additional C++ code to call the function:

tutorial::Class1 *cptr = new tutorial::Class1();

cptr->Method1();

And the Fortran version:

type(class1) cptr

cptr = class1_new()
call cptr%method1

 Lua

Lua

Note

Work in progress

 Python Tutorial

